Abstract

We experimentally and theoretically investigate the nonlinear electromagnetic properties of a microstrip photonic crystal (PC) cavity with embedded electromagnetic-induced-transparency (EIT)-like meta-atoms. A bistable response, with threshold of low to −6.1 dBm and the transmission contrast of up to 4.0 dB, is conceptually demonstrated with a varactor as the nonlinear medium inclusion. Such low-threshold and high-contrast transmission action comes from the composite PC-EIT mechanism, which possesses sharper features and stronger localization of the electromagnetic field than either PC cavity or EIT-like meta-atoms. This mechanism will be useful for all-optical signal processing with advanced materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear properties of light-tunneling heterostructures embedded with a highly dispersive meta-molecule

Yongqiang Chen, Yunhui Li, Kejia Zhu, Yu Fang, Xingzhi Wu, Yong Sun, and Quanying Wu
Opt. Mater. Express 8(11) 3583-3592 (2018)

Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials

Yunhui Li, Xuecheng Tao, Hong Chen, and Wing Yim Tam
J. Opt. Soc. Am. A 28(3) 314-317 (2011)

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Hai Lin, Dong Yang, Song Han, Yangjie Liu, and Helin Yang
Opt. Express 24(26) 30068-30078 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241–2249 (2002).
    [Crossref]
  2. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
    [Crossref]
  3. M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
    [Crossref] [PubMed]
  4. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
    [Crossref]
  5. D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
    [Crossref]
  6. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
    [Crossref] [PubMed]
  7. J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
    [Crossref] [PubMed]
  8. F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2012).
    [Crossref]
  9. Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
    [Crossref]
  10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  12. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  13. T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
  14. Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
    [Crossref]
  15. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano 5(10), 8167–8174 (2011).
    [Crossref] [PubMed]
  16. L. H. Du, J. Li, Q. Liu, J. H. Zhao, and L. G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335–1342 (2017).
    [Crossref]
  17. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref] [PubMed]
  18. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  19. Y. F. Ma, Z. Y. Li, Y. M. Yang, R. Huang, R. Singh, S. Zhang, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  20. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  21. R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, “Electromagnetically induced transparency with resonant nuclei in a cavity,” Nature 482(7384), 199–203 (2012).
    [Crossref] [PubMed]
  22. Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
    [Crossref]
  23. B. D. Clader, S. M. Hendrickson, R. M. Camacho, and B. C. Jacobs, “All-optical microdisk switch using EIT,” Opt. Express 21(5), 6169–6179 (2013).
    [Crossref] [PubMed]
  24. Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
    [Crossref]
  25. Y. Li, X. Tao, H. Chen, and W. Y. Tam, “Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials,” J. Opt. Soc. Am. A 28(3), 314–317 (2011).
    [Crossref] [PubMed]

2017 (1)

2013 (3)

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

B. D. Clader, S. M. Hendrickson, R. M. Camacho, and B. C. Jacobs, “All-optical microdisk switch using EIT,” Opt. Express 21(5), 6169–6179 (2013).
[Crossref] [PubMed]

2012 (3)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, “Electromagnetically induced transparency with resonant nuclei in a cavity,” Nature 482(7384), 199–203 (2012).
[Crossref] [PubMed]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2012).
[Crossref]

2011 (4)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Y. F. Ma, Z. Y. Li, Y. M. Yang, R. Huang, R. Singh, S. Zhang, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Y. Li, X. Tao, H. Chen, and W. Y. Tam, “Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials,” J. Opt. Soc. Am. A 28(3), 314–317 (2011).
[Crossref] [PubMed]

2010 (1)

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

2009 (2)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

2008 (3)

J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

2006 (2)

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

2003 (2)

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[Crossref]

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[Crossref] [PubMed]

2002 (2)

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241–2249 (2002).
[Crossref]

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1998 (1)

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Ben Bakir, B.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Camacho, R. M.

Cao, J. X.

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Chan, C. T.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[Crossref] [PubMed]

Chen, H.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Y. Li, X. Tao, H. Chen, and W. Y. Tam, “Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials,” J. Opt. Soc. Am. A 28(3), 314–317 (2011).
[Crossref] [PubMed]

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Clader, B. D.

Di Cioccio, L.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Ding, Y. Q.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Dong, Z. G.

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Du, L. H.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Fan, S.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[Crossref]

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Fan, Y.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Fedeli, J. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Fink, M.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2012).
[Crossref]

Fink, Y.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Gu, J. Q.

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Han, J. G.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, L.

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

He, M.-D.

Hendrickson, S. M.

Huang, R.

Huang, W.-Q.

Ibanescu, M.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Jacobs, B. C.

Jiang, H. T.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

Joannopoulos, J. D.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Johnson, S. G.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Kaina, N.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2012).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Kitano, M.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).

Kivshar, Y. S.

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lemoult, F.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2012).
[Crossref]

Lerosey, G.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2012).
[Crossref]

Letartre, X.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Levenson, A.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Li, H.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Li, H. Q.

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

Li, J.

L. H. Du, J. Li, Q. Liu, J. H. Zhao, and L. G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335–1342 (2017).
[Crossref]

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[Crossref] [PubMed]

Li, T.

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Li, Y.

Li, Y. H.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

Li, Z. Y.

Liu, H.

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Liu, J.-Q.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, Q.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Ma, Y. F.

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Mingaleev, S. F.

Monnier, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Nakanishi, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).

Otani, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Raineri, F.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Raj, R.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Röhlsberger, R.

R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, “Electromagnetically induced transparency with resonant nuclei in a cavity,” Nature 482(7384), 199–203 (2012).
[Crossref] [PubMed]

Sahoo, B.

R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, “Electromagnetically induced transparency with resonant nuclei in a cavity,” Nature 482(7384), 199–203 (2012).
[Crossref] [PubMed]

Schlage, K.

R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, “Electromagnetically induced transparency with resonant nuclei in a cavity,” Nature 482(7384), 199–203 (2012).
[Crossref] [PubMed]

Seassal, C.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Sheng, P.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[Crossref] [PubMed]

Sievenpiper, D. F.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. F. Ma, Z. Y. Li, Y. M. Yang, R. Huang, R. Singh, S. Zhang, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[Crossref]

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Tam, W. Y.

Tamayama, Y.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).

Tao, X.

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. F. Ma, Z. Y. Li, Y. M. Yang, R. Huang, R. Singh, S. Zhang, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Tong, Y. W.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Vecchi, G.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Viktorovitch, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Villeneuve, P. R.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Wang, D.

Wang, L.-L.

Wang, S. M.

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wei, Z.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, S.

Wille, H. C.

R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, “Electromagnetically induced transparency with resonant nuclei in a cavity,” Nature 482(7384), 199–203 (2012).
[Crossref] [PubMed]

Winn, J. N.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Xue, C. H.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Yablonovitch, E.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Yacomotti, A. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Yang, Y. M.

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. F. Ma, Z. Y. Li, Y. M. Yang, R. Huang, R. Singh, S. Zhang, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y. W.

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

Zhao, J. H.

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Zhou, L.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[Crossref] [PubMed]

Zhu, L. G.

Zhu, S. N.

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Zou, B. S.

ACS Nano (1)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[Crossref]

Y. H. Li, H. T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chen, “Multichanneled Filter Based on a Branchy Defect in Microstrip Photonic Crystal,” Appl. Phys. Lett. 88(8), 081106 (2006).
[Crossref]

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Phys. (1)

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2012).
[Crossref]

Nature (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, “Electromagnetically induced transparency with resonant nuclei in a cavity,” Nature 482(7384), 199–203 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (2)

Phys. Rev. B (1)

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Photograph of (a) microstrip PC cavity, (b) EIT-like meta-atoms, and (c) composite PC-EIT structure. The inset shows the detailed schematic of EIT meta-atoms.
Fig. 2
Fig. 2 Linear transmission spectra for microstrip PC cavity, EIT-like meta-atoms and PC-EIT structure: (a) simulation, (b) experiment. The inset shows the transmission spectrum of the PC bandgap structure.
Fig. 3
Fig. 3 Top view of electric energy density distributions at 0.87 GHz in (a) microstrip PC cavity, (b) EIT-like meta-atoms, and (c) composite PC-EIT structure.
Fig. 4
Fig. 4 Measured transmission for the combined PC-EIT structure with respect to the input power.
Fig. 5
Fig. 5 Hysteresis effects in frequency sweeping at different input power levels. The lowest bistable threshold is only −6.1 dBm.
Fig. 6
Fig. 6 Measured transmission spectra at 0.88 GHz as a function of input power from −6 dBm to −4 dBm. The black triangular and red inverse-triangular are respected to forward (increasing) and reverse (decreasing) power sweep, respectively.

Metrics