Abstract

Large-area high-ordered Ag nanopillar arrays with tunable nanogaps are fabricated by an electroless deposition method. Then, β-NaYF4:Pr3+ nanoparticles (NPs) are spin coated on the Ag nanopillar arrays. Plasmon enhanced near-infrared (NIR) downconversion (DC) luminescence involving the 876 nm (1D23F2) and 1017 nm (1D23F4,3), as well as the two-step sequential transitions at 915 nm (3P01G4) and 990 nm (1G43H4), are achieved by Ag nanopillar arrays under the excitation of 444 nm (3H43P2) of Pr3+ ions. The influence of different nanogaps between Ag nanopillar arrays on NIR DC luminescence is investigated, and the results show that the optimal nanogap size is 25 nm with a maximum enhancement factor about 3.98. Furthermore, 3D finite-difference time-domain (FDTD) simulation is performed to analyze the enhancement mechanism of NIR DC luminescence. Our study may have potential application in the field of silicon-based solar cells.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Lin Lin, Zhuohong Feng, Zhipeng Yu, Zhezhe Wang, Senyuan Xu, and Zhiqiang Zheng
Opt. Mater. Express 7(1) 224-230 (2017)

Efficient near-infrared downconversion and energy transfer mechanism in Tb4+-Yb3+ co-doped NaYF4 nanoparticles

Biao Zheng, Lin Lin, Senyuan Xu, Zhezhe Wang, Zhuohong Feng, and Zhiqiang Zheng
Opt. Mater. Express 6(9) 2769-2775 (2016)

Enhancement of the near-infrared emission in novel quantum cutting SiO2:Tb3+, Yb3+ thin films by Ag species

Siqin Wang, Jianbei Qiu, Xuhui Xu, Qi Wang, Dacheng Zhou, Zhengwen Yang, and Zhiguo Song
Opt. Mater. Express 6(4) 1065-1078 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
    [Crossref]
  2. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
    [Crossref]
  3. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
    [Crossref]
  4. J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
    [Crossref] [PubMed]
  5. J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
    [Crossref] [PubMed]
  6. L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
    [Crossref]
  7. B. Zheng, L. Lin, S. Xu, Z. Wang, Z. Feng, and Z. Zheng, “Efficient near-infrared downconversion and energy transfer mechanism in Tb4+-Yb3+ co-doped NaYF4 nanoparticles,” Opt. Mater. Express 6(9), 2769–2775 (2016).
    [Crossref]
  8. M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
    [Crossref]
  9. B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
    [Crossref]
  10. X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
    [Crossref]
  11. H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
    [Crossref] [PubMed]
  12. W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
    [Crossref] [PubMed]
  13. Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
    [Crossref]
  14. W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
    [Crossref] [PubMed]
  15. Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
    [Crossref] [PubMed]
  16. T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
    [Crossref]
  17. Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
    [Crossref]
  18. B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
    [Crossref] [PubMed]
  19. B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
    [Crossref] [PubMed]
  20. B. Zheng, L. Lin, Z. Feng, Z. Yu, Z. Wang, S. Xu, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Mater. Express 7(1), 224–230 (2017).
    [Crossref]
  21. P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
    [Crossref]
  22. D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
    [Crossref]
  23. G. K. Das, D. T. Stark, and I. M. Kennedy, “Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction,” Langmuir 30(27), 8167–8176 (2014).
    [Crossref] [PubMed]
  24. Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater. Sci. 95, 243–285 (2018).
    [Crossref]
  25. R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
    [Crossref]
  26. D. Yu, Q. Chen, H. Lin, Y. Wang, and Q. Zhang, “New insight into two-step near-infrared quantum cutting in Pr3+ singly doped oxyfluoride glass-ceramics,” Opt. Mater. Express 6(1), 197–206 (2016).
    [Crossref]

2018 (2)

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater. Sci. 95, 243–285 (2018).
[Crossref]

2017 (6)

B. Zheng, L. Lin, Z. Feng, Z. Yu, Z. Wang, S. Xu, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Mater. Express 7(1), 224–230 (2017).
[Crossref]

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
[Crossref]

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

2016 (4)

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

B. Zheng, L. Lin, S. Xu, Z. Wang, Z. Feng, and Z. Zheng, “Efficient near-infrared downconversion and energy transfer mechanism in Tb4+-Yb3+ co-doped NaYF4 nanoparticles,” Opt. Mater. Express 6(9), 2769–2775 (2016).
[Crossref]

D. Yu, Q. Chen, H. Lin, Y. Wang, and Q. Zhang, “New insight into two-step near-infrared quantum cutting in Pr3+ singly doped oxyfluoride glass-ceramics,” Opt. Mater. Express 6(1), 197–206 (2016).
[Crossref]

2015 (5)

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

2014 (1)

G. K. Das, D. T. Stark, and I. M. Kennedy, “Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction,” Langmuir 30(27), 8167–8176 (2014).
[Crossref] [PubMed]

2012 (3)

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

2011 (1)

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

2009 (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

2007 (1)

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

2005 (1)

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

Ahn, S.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Amelines-Sarria, O.

M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
[Crossref]

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Bai, X.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Chai, Z.

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

Chang, W.

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Chen, B.

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

Chen, H.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Chen, L.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Chen, P.

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Chen, Q.

D. Yu, Q. Chen, H. Lin, Y. Wang, and Q. Zhang, “New insight into two-step near-infrared quantum cutting in Pr3+ singly doped oxyfluoride glass-ceramics,” Opt. Mater. Express 6(1), 197–206 (2016).
[Crossref]

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

Chen, X.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Chou, S. Y.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Cui, H.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Cui, S.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Das, G. K.

G. K. Das, D. T. Stark, and I. M. Kennedy, “Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction,” Langmuir 30(27), 8167–8176 (2014).
[Crossref] [PubMed]

de la Mora, M. B.

M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
[Crossref]

del Cañizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

den Hertog, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

Ding, F.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Feng, Z.

Han, F.

Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater. Sci. 95, 243–285 (2018).
[Crossref]

Hao, Z.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Hernández-Pérez, C. D.

M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
[Crossref]

Hu, J.

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

Hu, X.

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

Huang, X. Y.

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Jiang, R.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Kennedy, I. M.

G. K. Das, D. T. Stark, and I. M. Kennedy, “Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction,” Langmuir 30(27), 8167–8176 (2014).
[Crossref] [PubMed]

Kim, D. H.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Kox, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

Li, C.

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Li, H.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Li, J.

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Li, L.

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Li, M.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Li, Q.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Li, R.

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

Lin, H.

Lin, L.

Lu, D.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Lugo, J. E.

M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
[Crossref]

Luo, Y.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Ma, Y.

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

Meng, G.

Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater. Sci. 95, 243–285 (2018).
[Crossref]

Ming, T.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Monroy, B. M.

M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
[Crossref]

Pan, Y.

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Park, W.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Qin, G.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Qiu, J.

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

Shao, B.

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Song, H.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Song, Z.

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

Stark, D. T.

G. K. Das, D. T. Stark, and I. M. Kennedy, “Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction,” Langmuir 30(27), 8167–8176 (2014).
[Crossref] [PubMed]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Švrcek, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Tobias, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

van der Eerden, J.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

Vergeer, P.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

Vlugt, T.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

Wang, C.

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

Wang, H.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Wang, J.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Wang, M.

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

Wang, Y.

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

D. Yu, Q. Chen, H. Lin, Y. Wang, and Q. Zhang, “New insight into two-step near-infrared quantum cutting in Pr3+ singly doped oxyfluoride glass-ceramics,” Opt. Mater. Express 6(1), 197–206 (2016).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

Wang, Z.

Xia, H.

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater. Sci. 95, 243–285 (2018).
[Crossref]

Xu, S.

Xu, W.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Yang, J.

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

Yang, Z.

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7(4), 1188–1197 (2017).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

Ye, H.

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

Ye, S.

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Yin, Z.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Yu, D.

Yu, D. C.

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Yu, Z.

Zeng, Z.

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Zhang, J.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Zhang, L.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Zhang, Q.

Zhang, Q. Y.

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Zhang, T.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Zhang, Y.

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

Zheng, B.

Zheng, Z.

Zhong, H.

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

Zhou, D.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Zhou, X.

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Zhu, J.

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

Zhu, Y.

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

H. Wang, M. Li, Z. Yin, T. Zhang, X. Chen, D. Zhou, J. Zhu, W. Xu, H. Cui, and H. Song, “Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting,” ACS Appl. Mater. Interfaces 9(42), 37128–37135 (2017).
[Crossref] [PubMed]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+,Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Adv. Mater. (3)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Inorg. Chem. (2)

J. Hu, Y. Zhang, H. Xia, H. Ye, B. Chen, and Y. Zhu, “NIR downconversion and energy transfer mechanisms in Tb3+/Yb3+ codoped Na5Lu9F32 single crystals,” Inorg. Chem. 57(13), 7792–7796 (2018).
[Crossref] [PubMed]

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient near-infrared downconversion and energy transfer mechanism of ce3+/yb3+ codoped calcium scandate phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (1)

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

J. Mater. Chem. C (1)

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+,Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: Beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Langmuir (1)

G. K. Das, D. T. Stark, and I. M. Kennedy, “Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction,” Langmuir 30(27), 8167–8176 (2014).
[Crossref] [PubMed]

Mater. Res. Bull. (1)

L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, and X. Zhou, “Near-infrared downconversion luminescence of SrMoO4:Tm3+,Yb3+ phosphors,” Mater. Res. Bull. 93, 144–149 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (4)

Phys. Rev. B. (1)

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B. 71(1), 014119 (2005).
[Crossref]

Prog. Mater. Sci. (1)

Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater. Sci. 95, 243–285 (2018).
[Crossref]

RSC Advances (2)

R. Li, Q. Chen, X. Hu, M. Wang, C. Wang, and H. Zhong, “A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction,” RSC Advances 2(6), 2250–2253 (2012).
[Crossref]

Y. Wang, Z. Yang, B. Shao, J. Yang, J. Li, J. Qiu, and Z. Song, “Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+,Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles,” RSC Advances 6(62), 56963–56970 (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

M. B. de la Mora, O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez, and J. E. Lugo, “Materials for downconversion in solar cells: Perspectives and challenges,” Sol. Energy Mater. Sol. Cells 165, 59–71 (2017).
[Crossref]

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the synthesis of β-NaYF4 NPs coated Ag nanopillar arrays.
Fig. 2
Fig. 2 SEM images of the as-prepared AAO templates with different NaOH etching duration (a) 0 s, (b) 20 s; Inset: Enlarge SEM image of AAO template, (c) 35 s, (d) 50 s.
Fig. 3
Fig. 3 SEM images of Ag nanopillar arrays with different nanogaps (a) 60 nm, (b) 40 nm, (c) 25 nm; Inset: The corresponding oblique view image, (d) 10 nm. (e) EDX analysis; Inset: The percentage of elements of Ag nanopillar arrays, and (f) Normalized extinction spectrum of Ag nanopillar arrays with the nanogap of 25 nm.
Fig. 4
Fig. 4 (a) XRD patterns of β-NaYF4:2%Pr3+ NPs; (b) SEM image of β-NaYF4:2%Pr3+ NPs; (c) Excitation spectrum (λem = 1017 nm) and (d) NIR emission spectrum (λex = 444 nm) of β-NaYF4:2%Pr3+ NPs spin-coated on aluminum sheet; In Fig. 4(d), solid curve represents NIR emission centered at ~1017 nm in 950-1050 nm, sphere is Gaussian fitting of NIR emission in 950-1050 nm, and dash curves are Gaussian fitting peaks; (e) Schematic diagram of the energy levels of Pr3+ ion in NIR DC luminescence.
Fig. 5
Fig. 5 SEM images of Ag nanopillar arrays coated with β-NaYF4:2%Pr3+ NPs.
Fig. 6
Fig. 6 (a) Excitation spectra (λem = 1017 nm) and (b) NIR emission spectra (λex = 444 nm) of β-NaYF4:2%Pr3+ NPs spin-coated on blank aluminum sheet and Ag nanopillar arrays with different nanogaps (G = 10 nm, 25 nm, 40 nm, 60 nm); (c) NIR emission spectra (λex = 444 nm) of β-NaYF4:Pr3+ NPs spin coated on Ag nanopillar arrays (G = 25 nm) from five different areas; (d) NIR emission spectra (λex = 444 nm) of β-NaYF4:Pr3+ NPs spin-coated on Ag nanopillar arrays (G = 25 nm) from same area under the different polarization of incident light. Inset: The polarization direction of the incident light.
Fig. 7
Fig. 7 Contour of simulated local electric field distributions in the Ag nanopillar arrays with different nanogaps excited at 444 nm; (a) G = 10 nm, (b) G = 25 nm, (c) G = 40 nm, (d) G = 60 nm.

Metrics