Abstract

Zinc oxide (ZnO) is a material that, depending on its properties, can be found in applications ranging from the most simple (food additives) to the most sophisticated ones (UV lasers). Because of such versatility, it is natural to explore alternative forms of ZnO that, ultimately, can be used to develop new ZnO-related properties or devices. Stimulated by these facts, this work was concerned with the light emission characteristics of ZnO in the form of micrometer-sized flake-like structures (μfk-ZnO). The samples were produced by thermal oxidation of a Zn film deposited by sputtering, and their main properties were investigated by morphological-structural-optical techniques. Along with a concise description involving the μfk-ZnO formation and its luminescent characteristics, the work also suggests the suitability of μfk-ZnO as a broad-band (white) light source.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
K doping effect on structural and optical properties of ZnO nanorods grown on semipolar (112-2) GaN films using a hydrothermal growth method

Soohwan Jang, Pyunghee Son, Jimin Kim, Sung-Nam Lee, and Kwang Hyeon Baik
Opt. Mater. Express 5(7) 1621-1627 (2015)

Selective patterned growth of ZnO nanowires/nanosheets and their photoluminescence properties

Kai Chen, Dao D. Thang, Satoshi Ishii, Ramu P. Sugavaneshwa, and Tadaaki Nagao
Opt. Mater. Express 5(2) 353-360 (2015)

Enhancement of light output power in GaN-based light-emitting diodes using hydrothermally grown ZnO micro-walls

Hyun Jeong, Yong Hwan Kim, Tae Hoon Seo, Hong Seok Lee, Jun Sung Kim, Eun-Kyung Suh, and Mun Seok Jeong
Opt. Express 20(10) 10597-10604 (2012)

References

  • View by:
  • |
  • |
  • |

  1. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [Crossref]
  2. L. S. Mende and J. L. Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
    [Crossref]
  3. A. Wei, L. Pan, and W. Huang, “Recent progress in the ZnO nanostructured-based sensors,” Mater. Sci. Eng. B 176(18), 1409–1421 (2011).
    [Crossref]
  4. S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
    [Crossref]
  5. Z. P. Yang, Z. H. Xie, C. C. Lin, and Y. J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399–407 (2015).
    [Crossref]
  6. K. K. Liu, C. X. Shan, R. Zhou, Q. I. Zhao, and D. Z. Shen, “Large-scale synthesis of ZnO nanoparticles and their application as phosphors in light-emitting devices,” Opt. Mater. Express 7(7), 2682–2690 (2017).
    [Crossref]
  7. V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
    [Crossref]
  8. R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
    [Crossref]
  9. P. Y. Chen and S. H. Yang, “Improved efficiency of perovskite solar cells based on Ni-doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection,” Opt. Mater. Express 6(11), 3651–3669 (2016).
    [Crossref]
  10. K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
    [Crossref] [PubMed]
  11. A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1(5), 883–889 (2011).
    [Crossref]
  12. A. R. Zanatta, “Coexistence of Sm2+ and Sm3+ ions in amorphous SiOx: origin, main line emission lines and excitation-recombination mechanisms,” Opt. Mater. Express 6(6), 2108–2117 (2016).
    [Crossref]
  13. J. B. Webb, “Formation of thin semiconducting films by sputtering,” in Thin Films from Free Atoms and Particles, K. J. Klabunde, ed. (Academic, 1985).
  14. L. A. Nafie, “Theory of Raman scattering,” in Handbook of Raman Spectroscopy, I. R. Lewis and H. Edwards, ed. (Marcel Dekker, 2001).
  15. B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
    [Crossref]
  16. W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy (Wiley Interscience, 1966), Chapter 3.
  17. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
    [Crossref]
  18. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
    [Crossref]
  19. B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum, 1990), Chapter 4.
  20. J. I. Pankove, Optical Processes in Semiconductors (Dover Publications, 1971), Chapter 3.
  21. J. Schanda, Colorimetry: Understanding the CIE System (John Wiley & Sons, 2007), Chapter 3.
  22. M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
    [Crossref]
  23. L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
    [Crossref] [PubMed]
  24. M. S. Niasari, M. G. Daghian, M. E. Zare, and F. S. Sangsefidi, “Solid state synthesis and characterization of zinc oxide (ZnO) microflakes by [bis(acetylacetonato)zinc(II)] and sodium hydroxide at room temperature,” J. Cluster Sci. 24(4), 1093–1101 (2013).
    [Crossref]

2017 (1)

2016 (3)

2015 (3)

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
[Crossref]

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Z. P. Yang, Z. H. Xie, C. C. Lin, and Y. J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399–407 (2015).
[Crossref]

2013 (2)

L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
[Crossref] [PubMed]

M. S. Niasari, M. G. Daghian, M. E. Zare, and F. S. Sangsefidi, “Solid state synthesis and characterization of zinc oxide (ZnO) microflakes by [bis(acetylacetonato)zinc(II)] and sodium hydroxide at room temperature,” J. Cluster Sci. 24(4), 1093–1101 (2013).
[Crossref]

2011 (3)

A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1(5), 883–889 (2011).
[Crossref]

M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
[Crossref]

A. Wei, L. Pan, and W. Huang, “Recent progress in the ZnO nanostructured-based sensors,” Mater. Sci. Eng. B 176(18), 1409–1421 (2011).
[Crossref]

2007 (1)

L. S. Mende and J. L. Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

2005 (1)

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

2004 (1)

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

1999 (1)

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

1983 (1)

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
[Crossref]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Alivov, Y. I.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Alves, H.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Avrutin, V.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Bairamov, B. H.

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
[Crossref]

Baratto, C.

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
[Crossref]

Bertram, F.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Bieganski, P.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Caban, P.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Chen, M.

M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
[Crossref]

Chen, P. Y.

Cho, S.

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

Cho, S. J.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Christen, J.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Comini, E.

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
[Crossref]

Daghian, M. G.

M. S. Niasari, M. G. Daghian, M. E. Zare, and F. S. Sangsefidi, “Solid state synthesis and characterization of zinc oxide (ZnO) microflakes by [bis(acetylacetonato)zinc(II)] and sodium hydroxide at room temperature,” J. Cluster Sci. 24(4), 1093–1101 (2013).
[Crossref]

Dogan, S.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Driscoll, J. L.

L. S. Mende and J. L. Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

Dworzak, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Faglia, G.

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
[Crossref]

Forster, D.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Frölich, A.

Galstyan, V.

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
[Crossref]

Gieraltowska, S.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Godlewski, M.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Gu, F.

M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
[Crossref]

Guo, G.

M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
[Crossref]

Gwozdz, K.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Haboeck, U.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Han, D.

M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
[Crossref]

Heinrich, A.

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
[Crossref]

Hoffmann, A.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Hofmann, D. M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Huang, W.

A. Wei, L. Pan, and W. Huang, “Recent progress in the ZnO nanostructured-based sensors,” Mater. Sci. Eng. B 176(18), 1409–1421 (2011).
[Crossref]

Irmer, G.

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
[Crossref]

Juan, J. C.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Ketterson, J. B.

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

Kim, Y.

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

Kriegseis, W.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Lai, C. W.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Lee, K. M.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Lee, Y. J.

Li, H.

L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
[Crossref] [PubMed]

Lin, C. C.

Liu, C.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Liu, J.

L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
[Crossref] [PubMed]

Liu, K. K.

Ma, J.

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

Mende, L. S.

L. S. Mende and J. L. Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

Meyer, B. K.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Morkoç, H.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Ngai, K. S.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Niasari, M. S.

M. S. Niasari, M. G. Daghian, M. E. Zare, and F. S. Sangsefidi, “Solid state synthesis and characterization of zinc oxide (ZnO) microflakes by [bis(acetylacetonato)zinc(II)] and sodium hydroxide at room temperature,” J. Cluster Sci. 24(4), 1093–1101 (2013).
[Crossref]

Ozgur, U.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Pan, L.

A. Wei, L. Pan, and W. Huang, “Recent progress in the ZnO nanostructured-based sensors,” Mater. Sci. Eng. B 176(18), 1409–1421 (2011).
[Crossref]

Pietruszka, R.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Popko, E. P.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Reshchikov, M. A.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Rodina, A. V.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Sangsefidi, F. S.

M. S. Niasari, M. G. Daghian, M. E. Zare, and F. S. Sangsefidi, “Solid state synthesis and characterization of zinc oxide (ZnO) microflakes by [bis(acetylacetonato)zinc(II)] and sodium hydroxide at room temperature,” J. Cluster Sci. 24(4), 1093–1101 (2013).
[Crossref]

Sberveglieri, G.

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
[Crossref]

Shan, C. X.

Shen, D. Z.

Straßburg, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

Sun, Y.

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Teke, A.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Toporov, V. V.

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
[Crossref]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Wachnicki, L.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Wang, L.

L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
[Crossref] [PubMed]

Wang, Z.

M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
[Crossref]

Wegener, M.

Wei, A.

A. Wei, L. Pan, and W. Huang, “Recent progress in the ZnO nanostructured-based sensors,” Mater. Sci. Eng. B 176(18), 1409–1421 (2011).
[Crossref]

Witkowski, B. S.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Wong, G. K. L.

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

Xie, Z. H.

Xu, S.

L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
[Crossref] [PubMed]

Yang, S. H.

Yang, Z. P.

Yue, Q.

L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
[Crossref] [PubMed]

Zanatta, A. R.

Zare, M. E.

M. S. Niasari, M. G. Daghian, M. E. Zare, and F. S. Sangsefidi, “Solid state synthesis and characterization of zinc oxide (ZnO) microflakes by [bis(acetylacetonato)zinc(II)] and sodium hydroxide at room temperature,” J. Cluster Sci. 24(4), 1093–1101 (2013).
[Crossref]

Zhao, Q. I.

Zhou, R.

Ziegler, E.

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
[Crossref]

Zielony, E.

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999).
[Crossref]

Ceram. Int. (1)

V. Galstyan, E. Comini, C. Baratto, G. Faglia, and G. Sberveglieri, “Nanostructured ZnO chemical gas sensors,” Ceram. Int. 41(10), 14239–14244 (2015).
[Crossref]

J. Appl. Phys. (1)

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

J. Cluster Sci. (1)

M. S. Niasari, M. G. Daghian, M. E. Zare, and F. S. Sangsefidi, “Solid state synthesis and characterization of zinc oxide (ZnO) microflakes by [bis(acetylacetonato)zinc(II)] and sodium hydroxide at room temperature,” J. Cluster Sci. 24(4), 1093–1101 (2013).
[Crossref]

J. Phys. Chem. C (1)

M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” J. Phys. Chem. C 115(26), 12763–12773 (2011).
[Crossref]

Mater. Sci. Eng. B (1)

A. Wei, L. Pan, and W. Huang, “Recent progress in the ZnO nanostructured-based sensors,” Mater. Sci. Eng. B 176(18), 1409–1421 (2011).
[Crossref]

Mater. Today (1)

L. S. Mende and J. L. Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

Opt. Mater. Express (5)

Phys. Chem. Chem. Phys. (1)

L. Wang, Q. Yue, H. Li, S. Xu, and J. Liu, “Study on electrochemiluminescence spectra of ZnO flakes,” Phys. Chem. Chem. Phys. 15(23), 9058–9061 (2013).
[Crossref] [PubMed]

Phys. Status Solidi (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Phys. Status Solidi, B Basic Res. (2)

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[Crossref]

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO,” Phys. Status Solidi, B Basic Res. 119(1), 227–234 (1983).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

R. Pietruszka, B. S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. P. Popko, and M. Godlewski, “New efficient solar cell structures based on zinc oxide nanorods,” Sol. Energy Mater. Sol. Cells 143, 99–104 (2015).
[Crossref]

Water Res. (1)

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Other (6)

J. B. Webb, “Formation of thin semiconducting films by sputtering,” in Thin Films from Free Atoms and Particles, K. J. Klabunde, ed. (Academic, 1985).

L. A. Nafie, “Theory of Raman scattering,” in Handbook of Raman Spectroscopy, I. R. Lewis and H. Edwards, ed. (Marcel Dekker, 2001).

W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy (Wiley Interscience, 1966), Chapter 3.

B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum, 1990), Chapter 4.

J. I. Pankove, Optical Processes in Semiconductors (Dover Publications, 1971), Chapter 3.

J. Schanda, Colorimetry: Understanding the CIE System (John Wiley & Sons, 2007), Chapter 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron micrographs (5 keV accelerating voltage) of Zn films deposited onto crystalline Si substrates: as-deposited [(a)] and after thermal annealing at increasing temperatures [(b) to (d)]. Notice the development of flake-like microstructures after treatment at ~450 °C.

Fig. 2
Fig. 2

(a) Raman scattering spectra (632.8 nm excitation) of ZnO samples as obtained by thermal annealing a Zn metal film at 450, 600, and 900 °C. The Raman spectrum of a commercial ZnO powder (99.995% pure) sample, along with their main phonon modes in the ~100-800 cm−1 range, is also shown. The spectra were normalized and vertically shifted for comparison reasons. (b) Diffuse reflectance spectra of some ZnO samples and of the ZnO powder. The spectrum of a diffuse reflectance standard (Spectralon®) is also shown.

Fig. 3
Fig. 3

(a) CL cathodoluminescence (7.5 keV electron energy) spectra of μfk-ZnO samples after annealing at different temperatures. (b) PL photoluminescence (350.7 nm photon excitation) spectra of the same μfk-ZnO samples shown in (a). PL at ~760 nm is an artifact (i.e., second-order of the UV peak at ~385 nm). All CL and PL spectra were normalized (see the multiplying factors) and vertically shifted for comparison purposes. The figures also include the CL and PL spectra of the ZnO powder sample as well as the light emission pattern of a commercial (Ce-doped YAG) white LED.

Fig. 4
Fig. 4

CIE Commission Internationale de l'Eclairage 1931 color diagrams, as obtained from the CL (a) and PL (b) spectra of μfk-ZnO samples. The x,y color coordinates corresponding to the results due to commercially available ZnO powder and white LED are also shown.