Abstract

Temperature controllable photothermal therapy (PTT) requires a nanoplatform in which the optical temperature sensor and photothermal calorifier are integrated together. To establish such a nanoplatform, in this work we designed a NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell structure, and studied on its temperature sensing and photothermal conversion. The core-shell nanoparticles were prepared via a thermal decomposition method; furthermore, their crystal structure and microscopic morphology were characterized by means of XRD and SEM/TEM. The properties of temperature sensing and excitation power dependent fluorescence branching ratios were investigated. It was found that the temperature sensing could be achieved based on the fluorescence intensity ratio of green emissions from Er3+, but could not be realized by using other fluorescence intensity ratios. The photothermal conversion was demonstrated under 808 and 980 nm co-excitation, and the dependences of photothermal conversion on the excitation power and irradiation time of 808 nm laser were observed. Moreover, it was also found that the core-shell particles could effectively accelerate the evaporation of anhydrous ethanol, thus implying the photothermal conversion under single 980 nm laser excitation could also be achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe

Lili Tong, Xiangping Li, Jinsu Zhang, Sai Xu, Jiashi Sun, Hui Zheng, Yanqiu Zhang, Xiangqing Zhang, Ruinian Hua, Haiping Xia, and Baojiu Chen
Opt. Express 25(14) 16047-16058 (2017)

Optical temperature sensing of NaYbF4: Tm3+ @ SiO2 core-shell micro-particles induced by infrared excitation

Xiangfu Wang, Jin Zheng, Yan Xuan, and Xiaohong Yan
Opt. Express 21(18) 21596-21606 (2013)

Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing

Lili Huo, Jiajia Zhou, Ruozhen Wu, Junfei Ren, Shengjun Zhang, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(4) 1056-1064 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
    [Crossref] [PubMed]
  2. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
    [Crossref] [PubMed]
  3. H. S. Kim and D. Y. Lee, “Photothermal therapy with gold nanoparticles as an anticancer medication,” J. Pharm. Investig. 47(1), 19–26 (2017).
    [Crossref]
  4. Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
    [Crossref] [PubMed]
  5. X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods Mol. Biol. 624, 343–357 (2010).
    [Crossref] [PubMed]
  6. X. H. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” A. J. M. 47(1), 1–9 (2011).
  7. X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
    [Crossref] [PubMed]
  8. M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
    [Crossref] [PubMed]
  9. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
    [Crossref] [PubMed]
  10. J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
    [Crossref] [PubMed]
  11. B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
    [Crossref]
  12. X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
    [Crossref] [PubMed]
  13. X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
    [Crossref] [PubMed]
  14. S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv Sci (Weinh) 3(12), 1600302 (2016).
    [Crossref] [PubMed]
  15. C. Chen, C. Li, and Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication,” Adv Sci (Weinh) 3(10), 1600029 (2016).
    [Crossref] [PubMed]
  16. H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).
  17. S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
    [Crossref]
  18. S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).
  19. U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
    [Crossref]
  20. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
    [Crossref]
  21. D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617, 1–6 (2014).
    [Crossref]
  22. N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).
  23. P. Haro-González, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
    [Crossref]
  24. S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).
  25. A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
    [Crossref]
  26. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  27. S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
    [Crossref]
  28. D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates,” Mater. Lett. 110, 233–236 (2013).
    [Crossref]
  29. S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
    [Crossref]
  30. H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
    [Crossref] [PubMed]
  31. H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
    [Crossref]
  32. S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
    [Crossref] [PubMed]
  33. Q. Y. Meng, T. Liu, J. Q. Dai, and W. J. Sun, “Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals,” J. Lumin. 179, 633–638 (2016).
    [Crossref]
  34. S. S. Wang, H. Zhou, X. X. Wang, and A. L. Pan, “Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals,” J. Phys. Chem. Solids 98, 28–31 (2016).
    [Crossref]
  35. J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
    [Crossref]
  36. X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  37. S. M. Michaelson and J. C. Lin, Propagation and absorption in tissue media: Biological effects and health implications of radiofrequency radiation (Springer US, Boston, 1987), Chap. 5.
  38. H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
    [Crossref]
  39. H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
    [Crossref]
  40. W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
    [Crossref] [PubMed]
  41. S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
    [Crossref] [PubMed]
  42. L. Y. Wang and Y. D. Li, “Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals,” Chem. Mater. 19(4), 727–734 (2007).
    [Crossref]
  43. Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
    [Crossref] [PubMed]
  44. T. M. Zhou, Y. Q. Zhang, Z. L. Wu, and B. J. Chen, “Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor,” J. Rare Earths 33(7), 686–692 (2015).
    [Crossref]
  45. B. Zhou, L. L. Tao, W. Jin, and Y. H. Tsang, “Intense near-UV upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE. Photonic. Tech. L. 24(19), 1726–1729 (2012).
    [Crossref]
  46. J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
    [Crossref]
  47. J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
    [Crossref]
  48. L. N. Sun, F. Gao, and Q. Huang, “White upconversion photoluminescence for Er3+-Tm3+-Yb3+ tri-codoped bismuth titanate ferroelectric thin films,” J. Alloys Compd. 588, 158–162 (2014).
    [Crossref]
  49. D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
    [Crossref]
  50. P. V. Delgado, D. Biner, and K. W. Kramer, “Judd–Ofelt analysis of β-NaGdF4:Yb3+, Tm3+ and β-NaGdF4:Er3+ single crystals,” J. Lumin. 189, 84–90 (2017).
    [Crossref]

2017 (10)

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

P. V. Delgado, D. Biner, and K. W. Kramer, “Judd–Ofelt analysis of β-NaGdF4:Yb3+, Tm3+ and β-NaGdF4:Er3+ single crystals,” J. Lumin. 189, 84–90 (2017).
[Crossref]

H. S. Kim and D. Y. Lee, “Photothermal therapy with gold nanoparticles as an anticancer medication,” J. Pharm. Investig. 47(1), 19–26 (2017).
[Crossref]

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

2016 (9)

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv Sci (Weinh) 3(12), 1600302 (2016).
[Crossref] [PubMed]

C. Chen, C. Li, and Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication,” Adv Sci (Weinh) 3(10), 1600029 (2016).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
[Crossref] [PubMed]

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Q. Y. Meng, T. Liu, J. Q. Dai, and W. J. Sun, “Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals,” J. Lumin. 179, 633–638 (2016).
[Crossref]

S. S. Wang, H. Zhou, X. X. Wang, and A. L. Pan, “Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals,” J. Phys. Chem. Solids 98, 28–31 (2016).
[Crossref]

2015 (4)

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

T. M. Zhou, Y. Q. Zhang, Z. L. Wu, and B. J. Chen, “Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor,” J. Rare Earths 33(7), 686–692 (2015).
[Crossref]

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

2014 (8)

L. N. Sun, F. Gao, and Q. Huang, “White upconversion photoluminescence for Er3+-Tm3+-Yb3+ tri-codoped bismuth titanate ferroelectric thin films,” J. Alloys Compd. 588, 158–162 (2014).
[Crossref]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617, 1–6 (2014).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

2013 (7)

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates,” Mater. Lett. 110, 233–236 (2013).
[Crossref]

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
[Crossref]

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

2012 (2)

B. Zhou, L. L. Tao, W. Jin, and Y. H. Tsang, “Intense near-UV upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE. Photonic. Tech. L. 24(19), 1726–1729 (2012).
[Crossref]

A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
[Crossref]

2011 (3)

P. Haro-González, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

X. H. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” A. J. M. 47(1), 1–9 (2011).

2010 (3)

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods Mol. Biol. 624, 343–357 (2010).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

2007 (1)

L. Y. Wang and Y. D. Li, “Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals,” Chem. Mater. 19(4), 727–734 (2007).
[Crossref]

2004 (1)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Abed, Z.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Babu, P.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Beik, J.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Benayas, A.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Biner, D.

P. V. Delgado, D. Biner, and K. W. Kramer, “Judd–Ofelt analysis of β-NaGdF4:Yb3+, Tm3+ and β-NaGdF4:Er3+ single crystals,” J. Lumin. 189, 84–90 (2017).
[Crossref]

Bu, Y. Y.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Caamaño, A. J.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Cai, C.

J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
[Crossref] [PubMed]

Cao, J. K.

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Carrasco, E.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Casalongue, H. S.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Chen, B.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Chen, B. J.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

T. M. Zhou, Y. Q. Zhang, Z. L. Wu, and B. J. Chen, “Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor,” J. Rare Earths 33(7), 686–692 (2015).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

Chen, C.

C. Chen, C. Li, and Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication,” Adv Sci (Weinh) 3(10), 1600029 (2016).
[Crossref] [PubMed]

Chen, J.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Chen, L. P.

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

Chen, Q.

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

Chen, X.

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

Chen, Y. H.

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Cheng, L. H.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

Chu, M.

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

Chung, J. H.

J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Cui, S.

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

Dai, H.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Dai, J. Q.

Q. Y. Meng, T. Liu, J. Q. Dai, and W. J. Sun, “Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals,” J. Lumin. 179, 633–638 (2016).
[Crossref]

del Rosal, B.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Delgado, P. V.

P. V. Delgado, D. Biner, and K. W. Kramer, “Judd–Ofelt analysis of β-NaGdF4:Yb3+, Tm3+ and β-NaGdF4:Er3+ single crystals,” J. Lumin. 189, 84–90 (2017).
[Crossref]

Deng, D.

J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
[Crossref] [PubMed]

Deng, K. M.

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Diaf, M.

A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
[Crossref]

Dong, B.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Dong, Y.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617, 1–6 (2014).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates,” Mater. Lett. 110, 233–236 (2013).
[Crossref]

Duan, C. K.

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Duvaut, T.

A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
[Crossref]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods Mol. Biol. 624, 343–357 (2010).
[Crossref] [PubMed]

El-Sayed, M. A.

X. H. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” A. J. M. 47(1), 1–9 (2011).

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods Mol. Biol. 624, 343–357 (2010).
[Crossref] [PubMed]

Feng, W.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

Fu, S.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Fu, S. B.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Gao, F.

L. N. Sun, F. Gao, and Q. Huang, “White upconversion photoluminescence for Er3+-Tm3+-Yb3+ tri-codoped bismuth titanate ferroelectric thin films,” J. Alloys Compd. 588, 158–162 (2014).
[Crossref]

Gao, J.

J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
[Crossref] [PubMed]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Ghoreishi, F. S.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Goldys, E. M.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

González-Pérez, S.

P. Haro-González, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Guo, C. F.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Guo, H.

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Guo, S.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Halas, N. J.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Han, G.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Hao, Z. D.

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

Haro-González, P.

P. Haro-González, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Hosseini-Nami, S.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Hu, F. F.

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Hua, R.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Hua, R. N.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Huang, L.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Huang, Q.

L. N. Sun, F. Gao, and Q. Huang, “White upconversion photoluminescence for Er3+-Tm3+-Yb3+ tri-codoped bismuth titanate ferroelectric thin films,” J. Alloys Compd. 588, 158–162 (2014).
[Crossref]

Huang, W.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods Mol. Biol. 624, 343–357 (2010).
[Crossref] [PubMed]

Huang, X. H.

X. H. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” A. J. M. 47(1), 1–9 (2011).

Jacinto, C.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Jaque, D.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Jayasankar, C. K.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

Jiang, G. C.

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Jiang, J. Q.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617, 1–6 (2014).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates,” Mater. Lett. 110, 233–236 (2013).
[Crossref]

Jiang, S.

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Jin, W.

B. Zhou, L. L. Tao, W. Jin, and Y. H. Tsang, “Intense near-UV upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE. Photonic. Tech. L. 24(19), 1726–1729 (2012).
[Crossref]

Jouart, J. P.

A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
[Crossref]

Juarranz, Á.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Kamrava, S. K.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Kang, S. H.

J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
[Crossref]

Kim, H. S.

H. S. Kim and D. Y. Lee, “Photothermal therapy with gold nanoparticles as an anticancer medication,” J. Pharm. Investig. 47(1), 19–26 (2017).
[Crossref]

Kramer, K. W.

P. V. Delgado, D. Biner, and K. W. Kramer, “Judd–Ofelt analysis of β-NaGdF4:Yb3+, Tm3+ and β-NaGdF4:Er3+ single crystals,” J. Lumin. 189, 84–90 (2017).
[Crossref]

Kumar, K.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Kumar, K. U.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Lalla, E.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).

Lavín, V.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

Lee, D. Y.

H. S. Kim and D. Y. Lee, “Photothermal therapy with gold nanoparticles as an anticancer medication,” J. Pharm. Investig. 47(1), 19–26 (2017).
[Crossref]

Lee, S. Y.

J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
[Crossref]

León-Luis, S. F.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).

P. Haro-González, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Li, C.

C. Chen, C. Li, and Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication,” Adv Sci (Weinh) 3(10), 1600029 (2016).
[Crossref] [PubMed]

Li, D. D.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617, 1–6 (2014).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates,” Mater. Lett. 110, 233–236 (2013).
[Crossref]

Li, D. G.

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Li, F.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

Li, H.

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

Li, J.

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

Li, T.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Li, X.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Li, X. P.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Li, Y. D.

L. Y. Wang and Y. D. Li, “Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals,” Chem. Mater. 19(4), 727–734 (2007).
[Crossref]

Li, Z.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Liang, S.

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

Liang, Y.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Liao, L. Q.

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Liu, C. S.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, F.

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

Liu, Q.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, S. H.

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Liu, T.

Q. Y. Meng, T. Liu, J. Q. Dai, and W. J. Sun, “Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals,” J. Lumin. 179, 633–638 (2016).
[Crossref]

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Lu, M.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Lü, S. Z.

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

Luo, Y. S.

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

Ma, D. L.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Mahata, M. K.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Martín, I. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

P. Haro-González, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Mehrzadi, S.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Meng, Q. Y.

Q. Y. Meng, T. Liu, J. Q. Dai, and W. J. Sun, “Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals,” J. Lumin. 179, 633–638 (2016).
[Crossref]

Ming, T.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Pan, A. L.

S. S. Wang, H. Zhou, X. X. Wang, and A. L. Pan, “Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals,” J. Phys. Chem. Solids 98, 28–31 (2016).
[Crossref]

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Pei, W. B.

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Pendharkar, A. I.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Peng, J.

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

Qin, W. P.

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Rai, V. K.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Ramiro, J.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Ren, F. Q.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Robinson, J. T.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Rocha, U.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Rodríguez, F. S.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Rodríguez-Mendoza, U. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

Ryu, J. H.

J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
[Crossref]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Sayoud, A.

A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
[Crossref]

Shakeri-Zadeh, A.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

Shao, Q. Y.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617, 1–6 (2014).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates,” Mater. Lett. 110, 233–236 (2013).
[Crossref]

Shao, Y.

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

Shi, Z.

C. Chen, C. Li, and Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication,” Adv Sci (Weinh) 3(10), 1600029 (2016).
[Crossref] [PubMed]

Shim, K. B.

J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
[Crossref]

Sinha, S.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Solé, J. G.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Song, E. H.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv Sci (Weinh) 3(12), 1600302 (2016).
[Crossref] [PubMed]

Song, H.

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Su, Q.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

Sui, G.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

Sun, J.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Sun, J. S.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Sun, L. N.

L. N. Sun, F. Gao, and Q. Huang, “White upconversion photoluminescence for Er3+-Tm3+-Yb3+ tri-codoped bismuth titanate ferroelectric thin films,” J. Alloys Compd. 588, 158–162 (2014).
[Crossref]

Sun, M.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Sun, S.

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

Sun, W. J.

Q. Y. Meng, T. Liu, J. Q. Dai, and W. J. Sun, “Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals,” J. Lumin. 179, 633–638 (2016).
[Crossref]

Suo, H.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Tabakman, S. M.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Tao, L.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Tao, L. L.

B. Zhou, L. L. Tao, W. Jin, and Y. H. Tsang, “Intense near-UV upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE. Photonic. Tech. L. 24(19), 1726–1729 (2012).
[Crossref]

Tian, B.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Tian, B. N.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Tian, S. F.

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Tiwari, S. P.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Tong, L.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

Tong, L. L.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

Trannoy, N.

A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
[Crossref]

Tsang, Y. H.

B. Zhou, L. L. Tao, W. Jin, and Y. H. Tsang, “Intense near-UV upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE. Photonic. Tech. L. 24(19), 1726–1729 (2012).
[Crossref]

Venkatramu, V.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

Vetrone, F.

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Vijaya, N.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

Vinh, D.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Wang, H.

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Wang, J.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, L. L.

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Wang, L. Y.

L. Y. Wang and Y. D. Li, “Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals,” Chem. Mater. 19(4), 727–734 (2007).
[Crossref]

Wang, P.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, S. S.

S. S. Wang, H. Zhou, X. X. Wang, and A. L. Pan, “Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals,” J. Phys. Chem. Solids 98, 28–31 (2016).
[Crossref]

Wang, X.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, X. F.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Wang, X. X.

S. S. Wang, H. Zhou, X. X. Wang, and A. L. Pan, “Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals,” J. Phys. Chem. Solids 98, 28–31 (2016).
[Crossref]

Wang, Y.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Wang, Z.

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Wei, X. T.

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Wen, J.

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

West, J. L.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Wu, C.

J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
[Crossref] [PubMed]

Wu, P.

J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
[Crossref] [PubMed]

Wu, Q.

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

Wu, X.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wu, Z. L.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

T. M. Zhou, Y. Q. Zhang, Z. L. Wu, and B. J. Chen, “Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor,” J. Rare Earths 33(7), 686–692 (2015).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

Xia, H.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Xia, H. P.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Xia, L.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Xiang, S. Y.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

Xie, X.

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Xu, S.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Xu, W.

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Xu, Y.

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

Yan, X. H.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Ye, S.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv Sci (Weinh) 3(12), 1600302 (2016).
[Crossref] [PubMed]

Yin, M.

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Yu, H.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Yu, H. Q.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zeng, P.

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

Zhang, J.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Zhang, J. H.

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

Zhang, J. S.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Zhang, P.

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

Zhang, Q. Y.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv Sci (Weinh) 3(12), 1600302 (2016).
[Crossref] [PubMed]

Zhang, S.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Zhang, X.

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Zhang, Y. Q.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

T. M. Zhou, Y. Q. Zhang, Z. L. Wu, and B. J. Chen, “Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor,” J. Rare Earths 33(7), 686–692 (2015).
[Crossref]

Zhang, Z. Y.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Zhao, J.

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

Zhao, J. H.

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

Zhao, X. Q.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Zheng, H.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

Zhong, H.

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966–1980 (2014).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Zhou, B.

B. Zhou, L. L. Tao, W. Jin, and Y. H. Tsang, “Intense near-UV upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE. Photonic. Tech. L. 24(19), 1726–1729 (2012).
[Crossref]

Zhou, D.

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

Zhou, H.

S. S. Wang, H. Zhou, X. X. Wang, and A. L. Pan, “Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals,” J. Phys. Chem. Solids 98, 28–31 (2016).
[Crossref]

Zhou, P.

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Zhou, S. S.

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Zhou, T. M.

T. M. Zhou, Y. Q. Zhang, Z. L. Wu, and B. J. Chen, “Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor,” J. Rare Earths 33(7), 686–692 (2015).
[Crossref]

Zhu, X.

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

Zhu, Y.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

A. J. M. (1)

X. H. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” A. J. M. 47(1), 1–9 (2011).

ACS Nano (2)

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Adv Sci (Weinh) (2)

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv Sci (Weinh) 3(12), 1600302 (2016).
[Crossref] [PubMed]

C. Chen, C. Li, and Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication,” Adv Sci (Weinh) 3(10), 1600029 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

B. del Rosal, E. Carrasco, F. Q. Ren, A. Benayas, F. Vetrone, F. S. Rodríguez, D. L. Ma, Á. Juarranz, and D. Jaque, “Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback,” Adv. Funct. Mater. 26(33), 6060–6068 (2016).
[Crossref]

Adv. Healthc. Mater. (1)

J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai, “Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer,” Adv. Healthc. Mater. 5(18), 2437–2449 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. G. Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Biomaterials (2)

M. Chu, J. Peng, J. Zhao, S. Liang, Y. Shao, and Q. Wu, “Laser light triggered-activated carbon nanosystem for cancer therapy,” Biomaterials 34(7), 1820–1832 (2013).
[Crossref] [PubMed]

Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, “Recent advances in different modal imaging-guided photothermal therapy,” Biomaterials 106, 144–166 (2016).
[Crossref] [PubMed]

Cancer Lett. (1)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Ceram. Int. (1)

J. H. Chung, J. H. Ryu, S. Y. Lee, S. H. Kang, and K. B. Shim, “Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4,” Ceram. Int. 39(2), 1951–1956 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

W. Xu, H. Song, X. Chen, H. Wang, S. Cui, D. Zhou, P. Zhou, and S. Xu, “Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films,” Chem. Commun. (Camb.) 51(8), 1502–1505 (2015).
[Crossref] [PubMed]

Chem. Eng. J. (1)

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Chem. Mater. (1)

L. Y. Wang and Y. D. Li, “Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals,” Chem. Mater. 19(4), 727–734 (2007).
[Crossref]

Chem. Soc. Rev. (1)

X. Zhu, Q. Su, W. Feng, and F. Li, “Anti-Stokes shift luminescent materials for bio-applications,” Chem. Soc. Rev. 46(4), 1025–1039 (2017).
[Crossref] [PubMed]

IEEE. Photonic. Tech. L. (1)

B. Zhou, L. L. Tao, W. Jin, and Y. H. Tsang, “Intense near-UV upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE. Photonic. Tech. L. 24(19), 1726–1729 (2012).
[Crossref]

Inorg. Chem. Commun. (1)

J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao, S. Z. Lü, and Y. S. Luo, “Synthesis, morphology, and upconversion luminescence of Tm3+/Yb3+ codoped bulk and submicro-rod CaSc2O4 phosphors,” Inorg. Chem. Commun. 38, 119–122 (2013).
[Crossref]

J. Alloys Compd. (5)

L. N. Sun, F. Gao, and Q. Huang, “White upconversion photoluminescence for Er3+-Tm3+-Yb3+ tri-codoped bismuth titanate ferroelectric thin films,” J. Alloys Compd. 588, 158–162 (2014).
[Crossref]

D. G. Li, W. P. Qin, S. H. Liu, W. B. Pei, Z. Wang, P. Zhang, L. L. Wang, and L. Huang, “Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals,” J. Alloys Compd. 653, 304–309 (2015).
[Crossref]

J. K. Cao, F. F. Hu, L. P. Chen, H. Guo, C. K. Duan, and M. Yin, “Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics,” J. Alloys Compd. 693, 326–331 (2017).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617, 1–6 (2014).
[Crossref]

S. Jiang, P. Zeng, L. Q. Liao, S. F. Tian, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals,” J. Alloys Compd. 617, 538–541 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

J. Colloid Interface Sci. (1)

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

J. Control. Release (1)

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications,” J. Control. Release 235, 205–221 (2016).
[Crossref] [PubMed]

J. Lumin. (3)

Q. Y. Meng, T. Liu, J. Q. Dai, and W. J. Sun, “Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals,” J. Lumin. 179, 633–638 (2016).
[Crossref]

A. Sayoud, J. P. Jouart, N. Trannoy, M. Diaf, and T. Duvaut, “Temperature measurements inside an Er3+-Yb3+ co-doped fluoridecrystal heated by a NIR laser diode and probed by red-to-green upconversion,” J. Lumin. 132(3), 566–569 (2012).
[Crossref]

P. V. Delgado, D. Biner, and K. W. Kramer, “Judd–Ofelt analysis of β-NaGdF4:Yb3+, Tm3+ and β-NaGdF4:Er3+ single crystals,” J. Lumin. 189, 84–90 (2017).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

J. Pharm. Investig. (1)

H. S. Kim and D. Y. Lee, “Photothermal therapy with gold nanoparticles as an anticancer medication,” J. Pharm. Investig. 47(1), 19–26 (2017).
[Crossref]

J. Phys. Chem. Solids (1)

S. S. Wang, H. Zhou, X. X. Wang, and A. L. Pan, “Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals,” J. Phys. Chem. Solids 98, 28–31 (2016).
[Crossref]

J. Rare Earths (1)

T. M. Zhou, Y. Q. Zhang, Z. L. Wu, and B. J. Chen, “Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor,” J. Rare Earths 33(7), 686–692 (2015).
[Crossref]

Mater. Lett. (1)

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates,” Mater. Lett. 110, 233–236 (2013).
[Crossref]

Mater. Res. Bull. (1)

P. Haro-González, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Methods Mol. Biol. (1)

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods Mol. Biol. 624, 343–357 (2010).
[Crossref] [PubMed]

Nanoscale (1)

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

S. S. Zhou, K. M. Deng, X. T. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Opt. Mater. Express (1)

RSC Advances (2)

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles†,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Sci. Rep. (1)

Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, and R. Hua, “Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy,” Sci. Rep. 7(1), 11849 (2017).
[Crossref] [PubMed]

Sensor. Actuat Biol. Chem. (2)

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,”Sensor. Actuat Biol. Chem. 186, 156–164 (2013).

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, “808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat Biol. Chem. 240, 386–391 (2017).

Sensor. Actuat. Biol. Chem. (2)

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sensor. Actuat. Biol. Chem. 176, 1167–1175 (2013).

Small (1)

X. Xie, Z. Li, Y. Zhang, S. Guo, A. I. Pendharkar, M. Lu, L. Huang, W. Huang, and G. Han, “Energing approximate to 800 nm excited lanthanide doped upconversion nanoparticles,” Small 13(6), 1602843 (2017).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Other (1)

S. M. Michaelson and J. C. Lin, Propagation and absorption in tissue media: Biological effects and health implications of radiofrequency radiation (Springer US, Boston, 1987), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) XRD patterns of NaYF4:Er3+/Yb3+ naked core and NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell and the pattern of β-NaYF4 taken from JCPDS: NO. 28-1192 as reference, (b) High resolution TEM image of core-shell sample.
Fig. 2
Fig. 2 (a) and (b) SEM images of naked core and core-shell nanoparticles, (c) and (d) TEM images of naked core and core-shell nanoparticles, (e) and (f) Statistical histograms for the particle size distribution of naked core and core-shell samples.
Fig. 3
Fig. 3 Fluorescence intensity ratio R ( IH/IS ) of NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell sample excited upon 980 nm with the laser current of 1.0 A (24.1 W/cm2) for a 70 min continuous irradiation.
Figure 4
Figure 4 (a) UC emission spectra in a temperature region of 300-336 K upon 980 nm excitation for the NaYF4:Er3+/Yb3+@ NaYF4:Tm3+/Yb3+ core-shell particles, (b) Relationship between the green emission intensity ratio (IR/IS) (●) and sample temperature; solid curve is the fitting curve to Eq. (1).
Fig. 5
Fig. 5 Temperature-dependent UC emission spectra of NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell particles under 980 nm fiber laser working at (a) 0.5 A (11.8 W/cm2) and (b) 0.9 A (39.9 W/cm2).
Fig. 6
Fig. 6 Dependence of the fluorescence intensity ratio Ri (i = 1-5) (a-e) on solution temperature at excitation current of 0.5 A (11.8 W/cm2, square) and 0.9 A (39.9 W/cm2, hexagon).
Fig. 7
Fig. 7 (a) UC emission spectra of the solution excited by 808 nm laser working at 1.0 A (81.1 W/cm2) within 60 min, (b) Dependence of the temperature of pure cyclohexane solution and the cyclohexane solution containing core-shell nanoparticles on the irradiation time and working current of 808 nm laser.
Fig. 8
Fig. 8 Dependence of the weight of anhydrous ethanol on the working currents and irradiation time of 980 nm laser. The symbols present the experimental data, and the straight lines indicate the variation trend.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = I H I S = C e x p ( Δ E / k T )

Metrics