Abstract

We present an investigation of the optical properties of diamagnetic P centers in P-doped silica by means of first-principles calculations, including many-body perturbation theory (GW and Bethe-Salpeter Equation) techniques. The calculated absorption spectra indicate that the 6.9 eV band is originated from the presence of a large number of [(O–)3P(=O)]0 tetrahedra, while only a negligible number of [(O–)2P(=O)2] tetrahedra could occur. Furthermore we show that positively charged substitutional P atoms can affect the silica absorption spectrum only above ∼8 eV, while three-fold P defects are not likely to occur as they should give rise to strong features, not observed, below ∼6.5 eV.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy

Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P.R. Foy, P.D. Dragic, and J. G. Eden
Opt. Express 20(13) 14494-14507 (2012)

Phosphorous doping and drawing effects on the Raman spectroscopic properties of O = P bond in silica-based fiber and preform

A. Alessi, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane
Opt. Mater. Express 2(10) 1391-1396 (2012)

Effects of doping SiO2 on the defect’s change in B2O3-containing phosphate based laser glasses used for high energy UV lasers

Mengya Sun, Zhanjun Duan, Pengfei Wang, Min Lu, and Bo Peng
Opt. Mater. Express 7(11) 4111-4122 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
    [Crossref]
  2. G. P. Agrawal, Fiber-Optic Communications Systems, 3rd edition (John Wiley & Sons, 2002).
    [Crossref]
  3. P. C. Becker, N. A. Olsson, and A. J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamental and Technology (Academic, 1999).
  4. J. Laegsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B,  65, 174114 (2002).
    [Crossref]
  5. S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
    [Crossref]
  6. T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136, 014503 (2012).
    [Crossref]
  7. D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
    [Crossref]
  8. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
    [Crossref]
  9. M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
    [Crossref]
  10. S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
    [Crossref]
  11. A. Tomashuk, M. Grekov, S. Vasiliev, and V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Express 22, 16778 (2014).
    [Crossref] [PubMed]
  12. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
    [Crossref]
  13. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743 (1983).
    [Crossref]
  14. Y. Uchida, J. Isoya, and J. A. Well, “Dynamic interchange among three states of phosphorus 4+ in α-quartz,” J. Phys. Chem. 83, 3462 (1979).
    [Crossref]
  15. H. Hosono, K. Kajihara, M. Hirano, and M. Oto, “Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading,” J. Appl. Phys. 91, 4121 (2002).
    [Crossref]
  16. D. Di Francesca, Role of Dopants, Interstitial O2 and Temperature in the Effects of Irradiation on Silica-based Optical Fibers PhD Thesis, Université Jean Monnet de Saint Etienne and Università degli studi di Palermo (2015).
  17. R. A. Weeks and P. J. Bray, “Electron spin resonance spectra of gamma-ray-irradiated Phosphate glasses and compounds: oxygen vacancies,” J. Chem. Phys. 48, 5 (1968).
    [Crossref]
  18. W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, and P. S. Winokur, “Nature of defect centers in B and P-doped SiO2 thin films,” Appl. Phys. Lett. 67, 995 (1995).
    [Crossref]
  19. P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
    [Crossref]
  20. M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorus-oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
    [Crossref]
  21. G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097 (2001).
    [Crossref]
  22. N. Shibata, M. Horiguchi, and T. Edahiro, “Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3,„ J. Non-Cryst. Solids 45, 115 (1981).
    [Crossref]
  23. G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
    [Crossref]
  24. G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
    [Crossref]
  25. H. Hosono, K. Kawamura, and M. Hirano, “Defect formation in SiO2:P2O5 glasses by excimer laser irradiation: effects of hydrogen loading, ” Bragg gratings, photosensitivity, and poling in glass waveguides (Optical Society of America, Washington, DC, USA). Stresa, Italy, paper BthA-2, 2001.
  26. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids,  306, 209 (2002).
    [Crossref]
  27. V. Pukhkaya, F. Trompier, and N. Ollier, “New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose,” J. Appl. Phys. 116, 123517 (2014).
    [Crossref]
  28. H. Hosono, Y. Abe, and H. Kawazoe, “ESR study of radiation induced paramagnetic defect centers localized on a phosphorus in binary phosphate glasses,” J. Non-Cryst. Solids 71, 261 (1985).
    [Crossref]
  29. S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
    [Crossref]
  30. A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
    [Crossref]
  31. A. N. Trukhin, A. Antuzevics, K. Golant, and D. L. Griscom, “Luminescence of phosphorus doped silica glass,” J. Non-Cryst. Solids 462, 10 (2017).
    [Crossref]
  32. J. P. Perdew and A. Zunger, “PZ: Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048 (1981).
    [Crossref]
  33. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
    [Crossref] [PubMed]
  34. L. Martin-Samos and G. Bussi, “SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation,” Comput. Phys. Commun. 180, 1416 (2009).
    [Crossref]
  35. N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).
  36. L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
    [Crossref]
  37. L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
    [Crossref]
  38. L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
    [Crossref]
  39. L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard, “Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study,” Opt. Mater. Express 5, 1054 (2015).
    [Crossref]
  40. L. Martin-Samos, Y. Limoge, and G. Roma, “Defects in amorphous SiO2: valence alternation pair model,” Phys. Rev. B 76, 104203 (2007).
    [Crossref]
  41. L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
    [Crossref] [PubMed]
  42. The breaking of a P-O bond in this case is a consequence of the fivefold valency of phosphorus which leads to the formation of a terminal oxygen atom as observed e.g. in v-P2O5 [53] and of a three-fold P due to the oxygen deficient environment of SiO2 with respect to P2O5. We note that it is more difficult to predict the breaking of a given P-O bond, formed between an oxygen and a positively charged substitutional P atom, when an electron is trapped at a ≡P+-O-P+≡ bridge. In fact the added electron could sometimes be localized at a P atom becoming a P2 center [13], or alternatively one could still observe the breaking of the P-O bond with the formation of a P1 center and a nearby [(O–)3P=O]0 tetrahedron.
  43. I. V. Abarenkov, I. I. Tupitsyn, V. G. Kuznetsov, and M. C. Payne, “Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity,” Phys. Rev. B 60, 7881 (1999).
    [Crossref]
  44. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263, 1 (2000).
    [Crossref]
  45. A. M. Stoneham, Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (Oxford, 2001).
    [Crossref]
  46. B. Gamoke, D. Neff, and J. Simons, “Nature of PO Bonds in Phosphates,” J. Phys. Chem. A 113, 5677 (2009).
    [Crossref] [PubMed]
  47. F. Weinhold and C.R. Landis, Valency and Bonding, (Cambridge University Press, 2005).
    [Crossref]
  48. P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev. 109, 1492 (1958).
    [Crossref]
  49. P. W. Anderson, “Model for the electronic structure of amorphous semiconductors,” Phys. Rev. Lett. 34, 953 (1975).
    [Crossref]
  50. We performed also a test calculation (using 800 states for the irreducible polarizability) of the absorption spectrum for a configuration with two substitutional PSi+ obtained from structure (i) by replacing a Si atom, ∼8 Å far apart from the first PSi+ atom, with a second PSi+. The calculated spectrum does not show any intensity below 7.8 eV.
  51. L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra,” Phys. Rev. B 79, 064202 (2009).
    [Crossref]
  52. A dark (bright) exciton is originated from forbidden (allowed) transitions and thus dark (bright) excitons have zero (non-zero) oscillator strenghts. Forbidden (allowed) refers to transitions that do not (do) fulfill the selection rules of the dielectric dipole (angolar momentum, spin, or q-vector). The electric dipole (oscillator strength) depends on the overlap between the initial and final state. When this overlap is very small, the corresponding exciton could be labelled as “rather dark” or “quasi-dark”.
  53. U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
    [Crossref]
  54. In Ref. [16] the creation of the P1 center was shown to be promoted by an increase of temperature. Furthermore at low temperature and low doses the P1 signal was not detected (Fig. 3.28 at p. 94 in Ref. [16]).
  55. H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
    [Crossref]

2017 (2)

A. N. Trukhin, A. Antuzevics, K. Golant, and D. L. Griscom, “Luminescence of phosphorus doped silica glass,” J. Non-Cryst. Solids 462, 10 (2017).
[Crossref]

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

2016 (1)

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

2015 (1)

2014 (3)

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

A. Tomashuk, M. Grekov, S. Vasiliev, and V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Express 22, 16778 (2014).
[Crossref] [PubMed]

V. Pukhkaya, F. Trompier, and N. Ollier, “New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose,” J. Appl. Phys. 116, 123517 (2014).
[Crossref]

2013 (2)

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

2012 (1)

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136, 014503 (2012).
[Crossref]

2011 (1)

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

2010 (2)

L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
[Crossref]

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

2009 (6)

G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
[Crossref]

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

L. Martin-Samos and G. Bussi, “SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation,” Comput. Phys. Commun. 180, 1416 (2009).
[Crossref]

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

B. Gamoke, D. Neff, and J. Simons, “Nature of PO Bonds in Phosphates,” J. Phys. Chem. A 113, 5677 (2009).
[Crossref] [PubMed]

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra,” Phys. Rev. B 79, 064202 (2009).
[Crossref]

2007 (3)

L. Martin-Samos, Y. Limoge, and G. Roma, “Defects in amorphous SiO2: valence alternation pair model,” Phys. Rev. B 76, 104203 (2007).
[Crossref]

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

2006 (1)

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorus-oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[Crossref]

2005 (1)

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

2003 (1)

S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
[Crossref]

2002 (3)

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids,  306, 209 (2002).
[Crossref]

J. Laegsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B,  65, 174114 (2002).
[Crossref]

H. Hosono, K. Kajihara, M. Hirano, and M. Oto, “Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading,” J. Appl. Phys. 91, 4121 (2002).
[Crossref]

2001 (1)

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097 (2001).
[Crossref]

2000 (1)

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263, 1 (2000).
[Crossref]

1999 (2)

I. V. Abarenkov, I. I. Tupitsyn, V. G. Kuznetsov, and M. C. Payne, “Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity,” Phys. Rev. B 60, 7881 (1999).
[Crossref]

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

1998 (1)

U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
[Crossref]

1997 (1)

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

1995 (1)

W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, and P. S. Winokur, “Nature of defect centers in B and P-doped SiO2 thin films,” Appl. Phys. Lett. 67, 995 (1995).
[Crossref]

1994 (1)

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

1989 (1)

F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
[Crossref]

1985 (1)

H. Hosono, Y. Abe, and H. Kawazoe, “ESR study of radiation induced paramagnetic defect centers localized on a phosphorus in binary phosphate glasses,” J. Non-Cryst. Solids 71, 261 (1985).
[Crossref]

1983 (1)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743 (1983).
[Crossref]

1981 (2)

N. Shibata, M. Horiguchi, and T. Edahiro, “Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3,„ J. Non-Cryst. Solids 45, 115 (1981).
[Crossref]

J. P. Perdew and A. Zunger, “PZ: Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048 (1981).
[Crossref]

1979 (1)

Y. Uchida, J. Isoya, and J. A. Well, “Dynamic interchange among three states of phosphorus 4+ in α-quartz,” J. Phys. Chem. 83, 3462 (1979).
[Crossref]

1975 (1)

P. W. Anderson, “Model for the electronic structure of amorphous semiconductors,” Phys. Rev. Lett. 34, 953 (1975).
[Crossref]

1968 (1)

R. A. Weeks and P. J. Bray, “Electron spin resonance spectra of gamma-ray-irradiated Phosphate glasses and compounds: oxygen vacancies,” J. Chem. Phys. 48, 5 (1968).
[Crossref]

1958 (1)

P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev. 109, 1492 (1958).
[Crossref]

Abarenkov, I. V.

I. V. Abarenkov, I. I. Tupitsyn, V. G. Kuznetsov, and M. C. Payne, “Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity,” Phys. Rev. B 60, 7881 (1999).
[Crossref]

Abe, Y.

H. Hosono, Y. Abe, and H. Kawazoe, “ESR study of radiation induced paramagnetic defect centers localized on a phosphorus in binary phosphate glasses,” J. Non-Cryst. Solids 71, 261 (1985).
[Crossref]

Achten, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

Agnello, S.

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communications Systems, 3rd edition (John Wiley & Sons, 2002).
[Crossref]

Alessi, A.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

Anderson, P. W.

P. W. Anderson, “Model for the electronic structure of amorphous semiconductors,” Phys. Rev. Lett. 34, 953 (1975).
[Crossref]

P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev. 109, 1492 (1958).
[Crossref]

Anglada, E.

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

Antuzevics, A.

A. N. Trukhin, A. Antuzevics, K. Golant, and D. L. Griscom, “Luminescence of phosphorus doped silica glass,” J. Non-Cryst. Solids 462, 10 (2017).
[Crossref]

Artacho, E.

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

Authier, N.

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

Baroni, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Bartz, A.

U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
[Crossref]

Becker, P. C.

P. C. Becker, N. A. Olsson, and A. J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamental and Technology (Academic, 1999).

Bhatnagar, P. K.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

Billman, C. A.

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

Bohra, D.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

Bonera, E.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorus-oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[Crossref]

Bonini, N.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Boscaino, R.

G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
[Crossref]

Boukente, A.

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

Boukenter, A.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard, “Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study,” Opt. Mater. Express 5, 1054 (2015).
[Crossref]

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
[Crossref]

Bray, P. J.

R. A. Weeks and P. J. Bray, “Electron spin resonance spectra of gamma-ray-irradiated Phosphate glasses and compounds: oxygen vacancies,” J. Chem. Phys. 48, 5 (1968).
[Crossref]

Brichard, B.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

Brow, R. K.

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263, 1 (2000).
[Crossref]

Bussi, G.

L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
[Crossref]

L. Martin-Samos and G. Bussi, “SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation,” Comput. Phys. Commun. 180, 1416 (2009).
[Crossref]

Calandra, M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Caldas, M. J.

L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
[Crossref]

Cannas, M.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
[Crossref]

Car, R

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Cavazzoni, C.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Ceresoli, D.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Chiarotti, G. L.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Cococcioni, M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Crocombette, J.-P.

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

Dabo, Ismaila

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Dal Corso, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Dasgupta, K.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

de Gironcoli, S.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

DeCrosta, D.

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

Deschamps, T.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136, 014503 (2012).
[Crossref]

Dhar, A.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

Di Francesca, D.

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

D. Di Francesca, Role of Dopants, Interstitial O2 and Temperature in the Effects of Irradiation on Silica-based Optical Fibers PhD Thesis, Université Jean Monnet de Saint Etienne and Università degli studi di Palermo (2015).

Dianov, E. M.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids,  306, 209 (2002).
[Crossref]

Druetta, M.

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

Edahiro, T.

N. Shibata, M. Horiguchi, and T. Edahiro, “Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3,„ J. Non-Cryst. Solids 45, 115 (1981).
[Crossref]

Erbetta, D.

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097 (2001).
[Crossref]

Evans, H.

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

Fabris, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Fanciulli, M.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorus-oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[Crossref]

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097 (2001).
[Crossref]

Ferdinand, P.

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

Flammer, I.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

Fleetwood, D. M.

W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, and P. S. Winokur, “Nature of defect centers in B and P-doped SiO2 thin films,” Appl. Phys. Lett. 67, 995 (1995).
[Crossref]

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743 (1983).
[Crossref]

Fratesi, G.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Friebele, E. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743 (1983).
[Crossref]

Fuller, R.

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

Gamoke, B.

B. Gamoke, D. Neff, and J. Simons, “Nature of PO Bonds in Phosphates,” J. Phys. Chem. A 113, 5677 (2009).
[Crossref] [PubMed]

Gebauer, R.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Gelardi, F. M.

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

Gerstmann, U.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Giacomazzi, L.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard, “Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study,” Opt. Mater. Express 5, 1054 (2015).
[Crossref]

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra,” Phys. Rev. B 79, 064202 (2009).
[Crossref]

Giannozzi, P.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Girard, S.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard, “Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study,” Opt. Mater. Express 5, 1054 (2015).
[Crossref]

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
[Crossref]

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
[Crossref]

Golant, K.

A. N. Trukhin, A. Antuzevics, K. Golant, and D. L. Griscom, “Luminescence of phosphorus doped silica glass,” J. Non-Cryst. Solids 462, 10 (2017).
[Crossref]

Gonnet, C.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136, 014503 (2012).
[Crossref]

Gooijer, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

Gougoussis, C.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Goure, J.

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

Grekov, M.

Griscom, D. L.

A. N. Trukhin, A. Antuzevics, K. Golant, and D. L. Griscom, “Luminescence of phosphorus doped silica glass,” J. Non-Cryst. Solids 462, 10 (2017).
[Crossref]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743 (1983).
[Crossref]

Gur’yanov, A. N.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

Gusarov, A.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

Hannon, A. C.

U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
[Crossref]

Hirano, M.

H. Hosono, K. Kajihara, M. Hirano, and M. Oto, “Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading,” J. Appl. Phys. 91, 4121 (2002).
[Crossref]

H. Hosono, K. Kawamura, and M. Hirano, “Defect formation in SiO2:P2O5 glasses by excimer laser irradiation: effects of hydrogen loading, ” Bragg gratings, photosensitivity, and poling in glass waveguides (Optical Society of America, Washington, DC, USA). Stresa, Italy, paper BthA-2, 2001.

Hoppe, U.

U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
[Crossref]

Horiguchi, M.

N. Shibata, M. Horiguchi, and T. Edahiro, “Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3,„ J. Non-Cryst. Solids 45, 115 (1981).
[Crossref]

Hosono, H.

H. Hosono, K. Kajihara, M. Hirano, and M. Oto, “Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading,” J. Appl. Phys. 91, 4121 (2002).
[Crossref]

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

H. Hosono, Y. Abe, and H. Kawazoe, “ESR study of radiation induced paramagnetic defect centers localized on a phosphorus in binary phosphate glasses,” J. Non-Cryst. Solids 71, 261 (1985).
[Crossref]

H. Hosono, K. Kawamura, and M. Hirano, “Defect formation in SiO2:P2O5 glasses by excimer laser irradiation: effects of hydrogen loading, ” Bragg gratings, photosensitivity, and poling in glass waveguides (Optical Society of America, Washington, DC, USA). Stresa, Italy, paper BthA-2, 2001.

Ichimura, T.

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

Isoya, J.

Y. Uchida, J. Isoya, and J. A. Well, “Dynamic interchange among three states of phosphorus 4+ in α-quartz,” J. Phys. Chem. 83, 3462 (1979).
[Crossref]

Kajihara, K.

H. Hosono, K. Kajihara, M. Hirano, and M. Oto, “Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading,” J. Appl. Phys. 91, 4121 (2002).
[Crossref]

Kawamura, K.

H. Hosono, K. Kawamura, and M. Hirano, “Defect formation in SiO2:P2O5 glasses by excimer laser irradiation: effects of hydrogen loading, ” Bragg gratings, photosensitivity, and poling in glass waveguides (Optical Society of America, Washington, DC, USA). Stresa, Italy, paper BthA-2, 2001.

Kawazoe, H.

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

H. Hosono, Y. Abe, and H. Kawazoe, “ESR study of radiation induced paramagnetic defect centers localized on a phosphorus in binary phosphate glasses,” J. Non-Cryst. Solids 71, 261 (1985).
[Crossref]

Keurinck, J.

S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
[Crossref]

Khopin, V. F.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

Kokalj, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Koltashev, V. V.

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids,  306, 209 (2002).
[Crossref]

Kuhnhenn, J.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

Kuytand, G.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

Kuznetsov, V. G.

I. V. Abarenkov, I. I. Tupitsyn, V. G. Kuznetsov, and M. C. Payne, “Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity,” Phys. Rev. B 60, 7881 (1999).
[Crossref]

Laegsgaard, J.

J. Laegsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B,  65, 174114 (2002).
[Crossref]

Landis, C.R.

F. Weinhold and C.R. Landis, Valency and Bonding, (Cambridge University Press, 2005).
[Crossref]

Lanin, A. V.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

Lau, F.

F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
[Crossref]

Lazzeri, M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Lenahan, P. M.

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

Limoge, Y.

L. Martin-Samos, Y. Limoge, and G. Roma, “Defects in amorphous SiO2: valence alternation pair model,” Phys. Rev. B 76, 104203 (2007).
[Crossref]

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

Long, K. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743 (1983).
[Crossref]

Lowry, R.

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

Mader, L.

F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
[Crossref]

Magne, S.

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

Marcandella, C.

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

Martin-Samos, L.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard, “Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study,” Opt. Mater. Express 5, 1054 (2015).
[Crossref]

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
[Crossref]

L. Martin-Samos and G. Bussi, “SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation,” Comput. Phys. Commun. 180, 1416 (2009).
[Crossref]

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

L. Martin-Samos, Y. Limoge, and G. Roma, “Defects in amorphous SiO2: valence alternation pair model,” Phys. Rev. B 76, 104203 (2007).
[Crossref]

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

Marzari, N.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Mauri, F.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Mazure, C.

F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
[Crossref]

Mazzarello, R.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Messina, F.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
[Crossref]

Meunier, J.-P.

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
[Crossref]

Mizuguchi, M.

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

Molinari, E.

L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
[Crossref]

Monnom, G.

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

Neff, D.

B. Gamoke, D. Neff, and J. Simons, “Nature of PO Bonds in Phosphates,” J. Phys. Chem. A 113, 5677 (2009).
[Crossref] [PubMed]

Nokhrin, S.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorus-oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[Crossref]

Ogawa, T.

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

Ollier, N.

V. Pukhkaya, F. Trompier, and N. Ollier, “New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose,” J. Appl. Phys. 116, 123517 (2014).
[Crossref]

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136, 014503 (2012).
[Crossref]

Olsson, N. A.

P. C. Becker, N. A. Olsson, and A. J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamental and Technology (Academic, 1999).

Origlio, G.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
[Crossref]

Orlowski, M.

F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
[Crossref]

Oto, M.

H. Hosono, K. Kajihara, M. Hirano, and M. Oto, “Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading,” J. Appl. Phys. 91, 4121 (2002).
[Crossref]

Ouerdane, Y.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard, “Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study,” Opt. Mater. Express 5, 1054 (2015).
[Crossref]

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
[Crossref]

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

Pacchioni, G.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorus-oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[Crossref]

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097 (2001).
[Crossref]

Paillet, P.

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

Paolini, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Pasquarello, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra,” Phys. Rev. B 79, 064202 (2009).
[Crossref]

Paul, M. C.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

Paulatto, L.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Payne, M. C.

I. V. Abarenkov, I. I. Tupitsyn, V. G. Kuznetsov, and M. C. Payne, “Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity,” Phys. Rev. B 60, 7881 (1999).
[Crossref]

Perdew, J. P.

J. P. Perdew and A. Zunger, “PZ: Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048 (1981).
[Crossref]

Plotnichenko, V. G.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids,  306, 209 (2002).
[Crossref]

Pukhkaya, V.

V. Pukhkaya, F. Trompier, and N. Ollier, “New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose,” J. Appl. Phys. 116, 123517 (2014).
[Crossref]

Quenard, S.

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

Regnier, E.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

Ricci, D.

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097 (2001).
[Crossref]

Richard, N.

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard, “Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study,” Opt. Mater. Express 5, 1054 (2015).
[Crossref]

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

Roma, G.

L. Martin-Samos, Y. Limoge, and G. Roma, “Defects in amorphous SiO2: valence alternation pair model,” Phys. Rev. B 76, 104203 (2007).
[Crossref]

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

Ruini, A.

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
[Crossref]

Rybaltovsky, A. A.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

Sbraccia, C.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Scandolo, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Sclauzero, G.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Seitsonen, A. P.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Semenov, S. L.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

Sen, R.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

Shaneyfelt, M. R.

W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, and P. S. Winokur, “Nature of defect centers in B and P-doped SiO2 thin films,” Appl. Phys. Lett. 67, 995 (1995).
[Crossref]

Shibata, N.

N. Shibata, M. Horiguchi, and T. Edahiro, “Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3,„ J. Non-Cryst. Solids 45, 115 (1981).
[Crossref]

Shinkuma, Y.

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

Simons, J.

B. Gamoke, D. Neff, and J. Simons, “Nature of PO Bonds in Phosphates,” J. Phys. Chem. A 113, 5677 (2009).
[Crossref] [PubMed]

Simpson, A. J. R.

P. C. Becker, N. A. Olsson, and A. J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamental and Technology (Academic, 1999).

Smogunov, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Sokolov, V. O.

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids,  306, 209 (2002).
[Crossref]

Speece, W. H.

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

Stachel, D.

U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
[Crossref]

Stoneham, A. M.

A. M. Stoneham, Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (Oxford, 2001).
[Crossref]

Svetukhin, V.

Tomashuk, A.

Trompier, F.

V. Pukhkaya, F. Trompier, and N. Ollier, “New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose,” J. Appl. Phys. 116, 123517 (2014).
[Crossref]

Trukhin, A. N.

A. N. Trukhin, A. Antuzevics, K. Golant, and D. L. Griscom, “Luminescence of phosphorus doped silica glass,” J. Non-Cryst. Solids 462, 10 (2017).
[Crossref]

Tupitsyn, I. I.

I. V. Abarenkov, I. I. Tupitsyn, V. G. Kuznetsov, and M. C. Payne, “Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity,” Phys. Rev. B 60, 7881 (1999).
[Crossref]

Uchida, Y.

Y. Uchida, J. Isoya, and J. A. Well, “Dynamic interchange among three states of phosphorus 4+ in α-quartz,” J. Phys. Chem. 83, 3462 (1979).
[Crossref]

Umari, P.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra,” Phys. Rev. B 79, 064202 (2009).
[Crossref]

Van Uffelen, M.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

Vasiliev, S.

Vezin, H.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136, 014503 (2012).
[Crossref]

Walter, G.

U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
[Crossref]

Warren, W. L.

W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, and P. S. Winokur, “Nature of defect centers in B and P-doped SiO2 thin films,” Appl. Phys. Lett. 67, 995 (1995).
[Crossref]

Watanabe, Y.

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

Weeks, R. A.

R. A. Weeks and P. J. Bray, “Electron spin resonance spectra of gamma-ray-irradiated Phosphate glasses and compounds: oxygen vacancies,” J. Chem. Phys. 48, 5 (1968).
[Crossref]

Weinhold, F.

F. Weinhold and C.R. Landis, Valency and Bonding, (Cambridge University Press, 2005).
[Crossref]

Well, J. A.

Y. Uchida, J. Isoya, and J. A. Well, “Dynamic interchange among three states of phosphorus 4+ in α-quartz,” J. Phys. Chem. 83, 3462 (1979).
[Crossref]

Wentzcovitch, R. M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

Werner, Ch.

F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
[Crossref]

Winokur, P. S.

W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, and P. S. Winokur, “Nature of defect centers in B and P-doped SiO2 thin films,” Appl. Phys. Lett. 67, 995 (1995).
[Crossref]

Zunger, A.

J. P. Perdew and A. Zunger, “PZ: Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048 (1981).
[Crossref]

Appl. Phys. A (1)

F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. A 49, 671 (1989).
[Crossref]

Appl. Phys. Lett. (1)

W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, and P. S. Winokur, “Nature of defect centers in B and P-doped SiO2 thin films,” Appl. Phys. Lett. 67, 995 (1995).
[Crossref]

Comput. Phys. Commun. (1)

L. Martin-Samos and G. Bussi, “SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation,” Comput. Phys. Commun. 180, 1416 (2009).
[Crossref]

IEEE Trans Nucl. Sci. (1)

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuytand, “Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres,” IEEE Trans Nucl. Sci. 54, 1115 (2007).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi, “Radiation response of Ce-codoped germanosilicate and phosphosilicate optical fibers,” IEEE Trans. Nucl. Sci. 63, 2058 (2016).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60, 2015 (2013).
[Crossref]

IEEE Trans. Nucl. Science (1)

P. M. Lenahan, C. A. Billman, R. Fuller, H. Evans, W. H. Speece, D. DeCrosta, and R. Lowry, “A study of charge trapping in PECVD PTEOS films,” IEEE Trans. Nucl. Science 44, 1834 (1997).
[Crossref]

J. Appl. Phys. (5)

H. Hosono, K. Kajihara, M. Hirano, and M. Oto, “Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading,” J. Appl. Phys. 91, 4121 (2002).
[Crossref]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743 (1983).
[Crossref]

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108, 123103 (2010).
[Crossref]

V. Pukhkaya, F. Trompier, and N. Ollier, “New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose,” J. Appl. Phys. 116, 123517 (2014).
[Crossref]

H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ichimura, Y. Watanabe, Y. Shinkuma, and T. Ogawa, “ArF excimer laser irradiation effects in AlF3-based fluoride glasses for vacuum ultraviolet optics,” J. Appl. Phys. 85, 3038 (1999).
[Crossref]

J. Chem. Phys. (2)

R. A. Weeks and P. J. Bray, “Electron spin resonance spectra of gamma-ray-irradiated Phosphate glasses and compounds: oxygen vacancies,” J. Chem. Phys. 48, 5 (1968).
[Crossref]

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136, 014503 (2012).
[Crossref]

J. Non-Cryst. Solids (8)

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496 (2009).
[Crossref]

S. Girard, Y. Ouerdane, C. Marcandella, A. Boukente, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids,  357, 1871 (2011).
[Crossref]

N. Shibata, M. Horiguchi, and T. Edahiro, “Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3,„ J. Non-Cryst. Solids 45, 115 (1981).
[Crossref]

H. Hosono, Y. Abe, and H. Kawazoe, “ESR study of radiation induced paramagnetic defect centers localized on a phosphorus in binary phosphate glasses,” J. Non-Cryst. Solids 71, 261 (1985).
[Crossref]

S. Girard, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and J. Keurinck, “Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers,” J. Non-Cryst. Solids 322, 78 (2003).
[Crossref]

A. N. Trukhin, A. Antuzevics, K. Golant, and D. L. Griscom, “Luminescence of phosphorus doped silica glass,” J. Non-Cryst. Solids 462, 10 (2017).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids,  306, 209 (2002).
[Crossref]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263, 1 (2000).
[Crossref]

J. Phys. Chem. (1)

Y. Uchida, J. Isoya, and J. A. Well, “Dynamic interchange among three states of phosphorus 4+ in α-quartz,” J. Phys. Chem. 83, 3462 (1979).
[Crossref]

J. Phys. Chem. A (1)

B. Gamoke, D. Neff, and J. Simons, “Nature of PO Bonds in Phosphates,” J. Phys. Chem. A 113, 5677 (2009).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097 (2001).
[Crossref]

J. Phys. Condens. Matter (2)

U. Hoppe, G. Walter, A. Bartz, D. Stachel, and A. C. Hannon, “The P-O bond lengths in v-P2O5 probed by neutron diffraction with high real-space resolution,” J. Phys. Condens. Matter 10, 261 (1998).
[Crossref]

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, Ismaila Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).
[Crossref] [PubMed]

J. Phys.: Condens. Matter (1)

N. Richard, L. Martin-Samos, S. Girard, A. Ruini, A. Boukenter, Y. Ouerdane, and J.-P. Meunier, “Oxygen deficient centers in silica: optical properties within many-body perturbation theory,” J. Phys.: Condens. Matter 25, 335502 (2013).

Nanotechnology (1)

L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, A. Alessi, N. Richard, and S. de Gironcoli, “Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms,” Nanotechnology 28, 195202 (2017).
[Crossref] [PubMed]

Opt. Comm. (1)

S. Magne, Y. Ouerdane, M. Druetta, J. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Comm. 11, 310 (1994).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev. 109, 1492 (1958).
[Crossref]

Phys. Rev. B (10)

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra,” Phys. Rev. B 79, 064202 (2009).
[Crossref]

L. Martin-Samos, Y. Limoge, and G. Roma, “Defects in amorphous SiO2: valence alternation pair model,” Phys. Rev. B 76, 104203 (2007).
[Crossref]

I. V. Abarenkov, I. I. Tupitsyn, V. G. Kuznetsov, and M. C. Payne, “Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity,” Phys. Rev. B 60, 7881 (1999).
[Crossref]

J. Laegsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B,  65, 174114 (2002).
[Crossref]

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorus-oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[Crossref]

L. Martin-Samos, Y. Limoge, J.-P. Crocombette, G. Roma, N. Richard, E. Anglada, and E. Artacho, “Neutral self-defects in a silica model: A first-principles study,” Phys. Rev. B 71, 014116 (2005).
[Crossref]

L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Caldas, “Unraveling effects of disorder on the electronic structure of SiO2 from first principles,” Phys. Rev. B 81, 081202(R) (2010).
[Crossref]

L. Giacomazzi, L. Martin-Samos, S. Girard, A. Boukenter, Y. Ouerdane, and N. Richard, “EPR parameters of E′ centers in v-SiO2 from first-principles calculations,” Phys. Rev. B 90, 014108 (2014).
[Crossref]

J. P. Perdew and A. Zunger, “PZ: Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048 (1981).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, and S. Girard, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80, 205208 (2009).
[Crossref]

Phys. Rev. Lett. (1)

P. W. Anderson, “Model for the electronic structure of amorphous semiconductors,” Phys. Rev. Lett. 34, 953 (1975).
[Crossref]

Quantum Electronics (1)

A. A. Rybaltovsky, V. O. Sokolov, V. G. Plotnichenko, A. V. Lanin, S. L. Semenov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm,” Quantum Electronics 37, 388 (2007).
[Crossref]

Other (10)

H. Hosono, K. Kawamura, and M. Hirano, “Defect formation in SiO2:P2O5 glasses by excimer laser irradiation: effects of hydrogen loading, ” Bragg gratings, photosensitivity, and poling in glass waveguides (Optical Society of America, Washington, DC, USA). Stresa, Italy, paper BthA-2, 2001.

D. Di Francesca, Role of Dopants, Interstitial O2 and Temperature in the Effects of Irradiation on Silica-based Optical Fibers PhD Thesis, Université Jean Monnet de Saint Etienne and Università degli studi di Palermo (2015).

G. P. Agrawal, Fiber-Optic Communications Systems, 3rd edition (John Wiley & Sons, 2002).
[Crossref]

P. C. Becker, N. A. Olsson, and A. J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamental and Technology (Academic, 1999).

We performed also a test calculation (using 800 states for the irreducible polarizability) of the absorption spectrum for a configuration with two substitutional PSi+ obtained from structure (i) by replacing a Si atom, ∼8 Å far apart from the first PSi+ atom, with a second PSi+. The calculated spectrum does not show any intensity below 7.8 eV.

F. Weinhold and C.R. Landis, Valency and Bonding, (Cambridge University Press, 2005).
[Crossref]

A dark (bright) exciton is originated from forbidden (allowed) transitions and thus dark (bright) excitons have zero (non-zero) oscillator strenghts. Forbidden (allowed) refers to transitions that do not (do) fulfill the selection rules of the dielectric dipole (angolar momentum, spin, or q-vector). The electric dipole (oscillator strength) depends on the overlap between the initial and final state. When this overlap is very small, the corresponding exciton could be labelled as “rather dark” or “quasi-dark”.

In Ref. [16] the creation of the P1 center was shown to be promoted by an increase of temperature. Furthermore at low temperature and low doses the P1 signal was not detected (Fig. 3.28 at p. 94 in Ref. [16]).

The breaking of a P-O bond in this case is a consequence of the fivefold valency of phosphorus which leads to the formation of a terminal oxygen atom as observed e.g. in v-P2O5 [53] and of a three-fold P due to the oxygen deficient environment of SiO2 with respect to P2O5. We note that it is more difficult to predict the breaking of a given P-O bond, formed between an oxygen and a positively charged substitutional P atom, when an electron is trapped at a ≡P+-O-P+≡ bridge. In fact the added electron could sometimes be localized at a P atom becoming a P2 center [13], or alternatively one could still observe the breaking of the P-O bond with the formation of a P1 center and a nearby [(O–)3P=O]0 tetrahedron.

A. M. Stoneham, Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (Oxford, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Ball and stick models of the six structures used in the present work: (i) a substitutional P atom, (ii) a three-fold coordinated P atom, (iii) a single [(O–)3P=O]0 tetrahedral unit embedded in silica, (iv) two [(O–)3P=O]0 units embedded in silica, (v) a single [(O–)2P(=O)2] unit embedded in silica, (vi) four [(O–)3P=O]0 units embedded in silica. Sticks represent bond between atoms. P atoms and their oxygen nearest neighbors are shown with yellow and red balls respectively. The H atom in (b) and (c) is shown with a cyan ball.
Fig. 2
Fig. 2 Optical absorption spectra of P-doped configurations containing a [(O–)3P=O] unit (black/solid), a [(O–)2P(=O)2] unit (green/dot-dashed), a three-coordinated P atom (orange/double-dot dashed) and a substitutional P Si + unit (blue/dotted) together with the spectrum of the undefected a-SiO2 (red/dashed line). Artificial broadenings of 0.014 eV have been used.
Fig. 3
Fig. 3 Charge density (shadowed) of [(a) and (b)] the first two highest occupied states a1, a2 and (c) of the the bottom of conduction band state as calculated for structure (iii) shown in Fig. 1. Isolevels are set to 10% of the grid maximum.
Fig. 4
Fig. 4 (a) Optical absorption spectra and (b) density of states (DOS) of the [(O–)3P=O]0 defect configuration (solid line) and of the undefected a-SiO2 (red dotted line). Artificial broadenings of 0.15 eV and 0.014 eV have been chosen to represent the DOS and the absorption spectra respectively. Vertical dotted lines are used to indicate the defect states a1,a2 (O 2p of the terminal oxygen) and the bottom of the conduction band (bcb). The localization of states in P-doped (squares) and pure silica (discs) models is shown in (b) by means of the normalized |SI|.
Fig. 5
Fig. 5 Charge density (shadowed) of [(a) to (e)] the first five highest occupied states a1a5 and (f) of the bcb state as calculated for structure (v) shown in Fig. 1. Isolevels are set to 10% of the grid maximum.
Fig. 6
Fig. 6 (a) Optical absorption spectra and (b) density of states (DOS) of the [(O-)2P(=O)2] defect configuration (solid line) and of the undefected a-SiO2 (red dotted line). Artificial broadenings of 0.15 eV and 0.014 eV have been chosen to represent the DOS and the absorption spectra respectively. Vertical dotted lines are used to indicate the single-particle transitions A,B,C,D,E between defect states and the bottom of the conduction band (bcb). The localization of states in P-doped (squares) and pure silica (discs) models is shown in (b) by means of the normalized |SI|.
Fig. 7
Fig. 7 (a) Optical absorption spectra and (b) density of states (DOS) of the three-coordinated P defect configuration (solid line) and of the undefected a-SiO2 (red dotted line). The localization of states in P-doped (squares) and pure silica (discs) models is shown in (b) by means of the normalized |SI|. Artificial broadenings of 0.15 eV and 0.014 eV have been chosen to represent the DOS and the absorption spectra respectively. Vertical dotted lines are used to indicate the defect states a, b and the bottom of the conduction band (bcb). Bottom panel (c) charge density of the highest occupied state a and (d) a localized state of the conduction band (at ∼11.6 eV).
Fig. 8
Fig. 8 OA spectrum (solid) of a P-doped silica model with 1 to ∼6 wt% P content (four P atoms): additivity of the peak at ∼7 eV in configurations containing one (solid) and two (red/dotted) and four [(O–)3P(=O)]0 (blue/dashed) units [structures (iii), (iv), (vi) of Fig. 1]. A 0.1 eV broadening is applied. In the inset the experimental optical absorption [taken from Refs. [23] (solid) and [31] (dotted)] of P-doped silica preforms (7 wt% and 1 wt% P content) in the UV-VUV range are shown.
Fig. 9
Fig. 9 (a) Charge density of the highest occupied state for the fully relaxed [(O-)2P(=O)2] configuration: the charge density is localized on the non-bridging oxygen and on the oxygen shared between the four-coordinated P-atom and the penta-coordinated Si atom. (b) Spin-density of the configuration obtained by first-principles relaxation of the neutralized [i.e. by removing one electron] configuration (a) and corresponding to a r-POHC center [20, 24].

Tables (2)

Tables Icon

Table 1 P–O and P=O bond lengths (Å) as calculated in the present work and as found in Refs. [20, 21] for diamagnetic P defect configurations.

Tables Icon

Table 2 Calculated energy position (eV) together with oscillator strengths (f) for the first (brightest) excitons below ∼7.5 eV in silica models containing [(O–)3P:]0, [(O–)3P=O]0 and [(O–)2P(= O)2] unit structures (∼1 wt% P-doping [31]). The main single-particle transitions underlying the exciton are shown in Figs. 4, 6 and 7.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SiCl 4 + O 2 SiO 2 + 2 Cl 2
4 POCl 3 + 3 O 2 2 P 2 O 5 + 6 Cl 2 .
PO 4 + + [ ( O ) 3 P = O ] 0 P 2 + POHC ,

Metrics