Abstract

The effects of a second electron trap, tris-(8-hydroxyquinoline)aluminum (Alq3), 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7), or bathophenanthroline (BPhen), on the photorefractive (PR) sensitivity, response time, and diffraction efficiency are investigated for a methyl-substituted poly(triarylamine) (PTAA)-based PR composite. An extremely high PR sensitivity of 1145 cm2 J−1 with a sub-millisecond response time of 397 μs with an internal diffraction efficiency of 73.3% is achieved at an electric field of 60 V μm−1 for the PTAA-based PR composite containing BPhen. The fast, sub-millisecond response time and fourth-order sensitivity are mainly contributed to the reduction of the photocurrent due to the formation of a charge-transfer complex between PTAA and BPhen. Furthermore, the obtained results estimate the response time to be 97 μs for the PTAA-based PR composite containing an appropriate second electron trap with a photoconductivity of 3.3 nS cm−1.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Grating dynamics in a photorefractive polymer with Alq3 electron traps

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian
Opt. Express 18(9) 9358-9365 (2010)

Poly(silane)-based high-mobility photorefractive polymers

S. M. Silence, J. C. Scott, F. Hache, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, and W. E. Moerner
J. Opt. Soc. Am. B 10(12) 2306-2312 (1993)

References

  • View by:
  • |
  • |
  • |

  1. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [Crossref] [PubMed]
  2. P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
    [Crossref]
  3. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref] [PubMed]
  4. W. E. Moerner and M. S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
    [Crossref]
  5. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
    [Crossref] [PubMed]
  6. J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
    [Crossref]
  7. S. Tsujimura, K. Kinashi, W. Sakai, and N. Tsutsumi, “High-speed photorefractive response capability in triphenylamine polymer-based composites,” Appl. Phys. Express 5(6), 064101 (2012).
    [Crossref]
  8. N. Tsutsumi, “Molecular design of photorefractive polymers,” Polym. J. 48(5), 571–588 (2016).
    [Crossref]
  9. N. Tsutsumi and K. Kenji, “Photorefractive response: an approach from the photoconductive properties,”in Photorefractive Organic Materials and Applications, Pierre-Alexandre Blanche, ed. (Springer 2016), Chap. 3.
  10. J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
    [Crossref] [PubMed]
  11. N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66(2), 167–174 (2017).
    [Crossref]
  12. P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
    [Crossref] [PubMed]
  13. N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
    [Crossref]
  14. N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive dynamics in poly(triarylamine)-based polymer composites,” Opt. Express 23(19), 25158–25170 (2015).
    [Crossref] [PubMed]
  15. K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
    [Crossref]
  16. J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
    [Crossref]
  17. P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
    [Crossref]
  18. T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
    [Crossref]
  19. J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
    [Crossref]
  20. K. Kinashi, Y. Wang, W. Sakai, and N. Tsutsumi, “Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: An approach from the perspectives of chemistry and physics,” Macromol. Chem. Phys. 214(16), 1789–1797 (2013).
    [Crossref]
  21. T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
    [Crossref]

2017 (2)

N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66(2), 167–174 (2017).
[Crossref]

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

2016 (3)

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

N. Tsutsumi, “Molecular design of photorefractive polymers,” Polym. J. 48(5), 571–588 (2016).
[Crossref]

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

2015 (2)

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive dynamics in poly(triarylamine)-based polymer composites,” Opt. Express 23(19), 25158–25170 (2015).
[Crossref] [PubMed]

2014 (1)

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

2013 (2)

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

K. Kinashi, Y. Wang, W. Sakai, and N. Tsutsumi, “Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: An approach from the perspectives of chemistry and physics,” Macromol. Chem. Phys. 214(16), 1789–1797 (2013).
[Crossref]

2012 (1)

S. Tsujimura, K. Kinashi, W. Sakai, and N. Tsutsumi, “High-speed photorefractive response capability in triphenylamine polymer-based composites,” Appl. Phys. Express 5(6), 064101 (2012).
[Crossref]

2010 (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

2009 (1)

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[Crossref]

2008 (2)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

2004 (1)

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[Crossref] [PubMed]

2002 (1)

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

2000 (1)

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

1994 (1)

W. E. Moerner and M. S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
[Crossref]

1992 (1)

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Bittner, R.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Blanche, P.

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

Blanche, P. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Blanche, P.-A.

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Buettner, A. V.

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

Cahen, D.

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

Chantharasupawong, P.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

Christenson, C. W.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Churin, D.

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

Cimrová, V.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Däubler, T. K.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Endres, J.

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Hodes, G.

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Huber, D. L.

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Hummelen, J. C.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Jin, S.-H.

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Kahn, A.

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Kieu, K.

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

Kinashi, K.

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive dynamics in poly(triarylamine)-based polymer composites,” Opt. Express 23(19), 25158–25170 (2015).
[Crossref] [PubMed]

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

K. Kinashi, Y. Wang, W. Sakai, and N. Tsutsumi, “Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: An approach from the perspectives of chemistry and physics,” Macromol. Chem. Phys. 214(16), 1789–1797 (2013).
[Crossref]

S. Tsujimura, K. Kinashi, W. Sakai, and N. Tsutsumi, “High-speed photorefractive response capability in triphenylamine polymer-based composites,” Appl. Phys. Express 5(6), 064101 (2012).
[Crossref]

Kono, K.

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive dynamics in poly(triarylamine)-based polymer composites,” Opt. Express 23(19), 25158–25170 (2015).
[Crossref] [PubMed]

Kulbak, M.

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

Kulikovsky, L.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Li, G.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Lynn, B.

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

Masumura, K.

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive dynamics in poly(triarylamine)-based polymer composites,” Opt. Express 23(19), 25158–25170 (2015).
[Crossref] [PubMed]

Mecher, E.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Meerholz, K.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[Crossref] [PubMed]

W. E. Moerner and M. S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
[Crossref]

Monson, T. C.

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Moon, J.-S.

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Nair, R. R.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Neher, D.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Norwood, R. A.

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

Oh, J.-W.

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[Crossref] [PubMed]

Peyghambarian, N.

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[Crossref]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Philip, R.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Rand, B. P.

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

Rokutanda, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Saint-Hilaire, P.

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

Sakai, W.

K. Kinashi, Y. Wang, W. Sakai, and N. Tsutsumi, “Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: An approach from the perspectives of chemistry and physics,” Macromol. Chem. Phys. 214(16), 1789–1797 (2013).
[Crossref]

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

S. Tsujimura, K. Kinashi, W. Sakai, and N. Tsutsumi, “High-speed photorefractive response capability in triphenylamine polymer-based composites,” Appl. Phys. Express 5(6), 064101 (2012).
[Crossref]

Schildkraut, J. S.

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

Shinkai, H.

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Silence, M. S.

W. E. Moerner and M. S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
[Crossref]

St Hilaire, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Stevens, T. E.

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Tay, S.

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Tetard, L.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Thomas, J.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

Tsujimura, S.

S. Tsujimura, K. Kinashi, W. Sakai, and N. Tsutsumi, “High-speed photorefractive response capability in triphenylamine polymer-based composites,” Appl. Phys. Express 5(6), 064101 (2012).
[Crossref]

Tsutsumi, N.

N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66(2), 167–174 (2017).
[Crossref]

N. Tsutsumi, “Molecular design of photorefractive polymers,” Polym. J. 48(5), 571–588 (2016).
[Crossref]

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive dynamics in poly(triarylamine)-based polymer composites,” Opt. Express 23(19), 25158–25170 (2015).
[Crossref] [PubMed]

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

K. Kinashi, Y. Wang, W. Sakai, and N. Tsutsumi, “Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: An approach from the perspectives of chemistry and physics,” Macromol. Chem. Phys. 214(16), 1789–1797 (2013).
[Crossref]

S. Tsujimura, K. Kinashi, W. Sakai, and N. Tsutsumi, “High-speed photorefractive response capability in triphenylamine polymer-based composites,” Appl. Phys. Express 5(6), 064101 (2012).
[Crossref]

Tunç, A. V.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Wang, Y.

K. Kinashi, Y. Wang, W. Sakai, and N. Tsutsumi, “Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: An approach from the perspectives of chemistry and physics,” Macromol. Chem. Phys. 214(16), 1789–1797 (2013).
[Crossref]

Winiarz, J.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Winiarz, J. G.

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Yamamoto, M.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

Zhai, L.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Zhao, L.

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

Appl. Phys. Express (1)

S. Tsujimura, K. Kinashi, W. Sakai, and N. Tsutsumi, “High-speed photorefractive response capability in triphenylamine polymer-based composites,” Appl. Phys. Express 5(6), 064101 (2012).
[Crossref]

Chem. Rev. (2)

W. E. Moerner and M. S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
[Crossref]

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (2)

J. Endres, M. Kulbak, L. Zhao, B. P. Rand, D. Cahen, G. Hodes, and A. Kahn, “Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system,” J. Appl. Phys. 121(3), 035304 (2017).
[Crossref]

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

J. Disp. Technol. (1)

P. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[Crossref]

J. Mater. Chem. (1)

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

Macromol. Chem. Phys. (1)

K. Kinashi, Y. Wang, W. Sakai, and N. Tsutsumi, “Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: An approach from the perspectives of chemistry and physics,” Macromol. Chem. Phys. 214(16), 1789–1797 (2013).
[Crossref]

Nature (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Org. Electron. (1)

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

Phys. Rev. B (1)

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Polym. Int. (1)

N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66(2), 167–174 (2017).
[Crossref]

Polym. J. (1)

N. Tsutsumi, “Molecular design of photorefractive polymers,” Polym. J. 48(5), 571–588 (2016).
[Crossref]

Proc. SPIE (1)

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Sci. Rep. (2)

P.-A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016), doi:.
[Crossref] [PubMed]

J.-S. Moon, T. E. Stevens, T. C. Monson, D. L. Huber, S.-H. Jin, J.-W. Oh, and J. G. Winiarz, “Sub-millisecond response time in a photorefractive composite operating under CW conditions,” Sci. Rep. 6(1), 30810 (2016), doi:.
[Crossref] [PubMed]

Other (1)

N. Tsutsumi and K. Kenji, “Photorefractive response: an approach from the photoconductive properties,”in Photorefractive Organic Materials and Applications, Pierre-Alexandre Blanche, ed. (Springer 2016), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structural formulae of the compounds used in this study.
Fig. 2
Fig. 2 Plots of the photocurrent as a function of the applied electric field for PTAA-based PR composites with and without second electron traps.
Fig. 3
Fig. 3 UV-Vis spectra of PTAA-based PR composites with and without second electron traps. The dashed curves are the spectra due to charge transfer between PTAA and the second electron trap.
Fig. 4
Fig. 4 Energy level diagram of the PTAA-based PR composite containing BPhen and the related potential energies of the ITO substrate, SAM-modified ITO electrode, PCBM, PTAA, BPhen, PDCST and TAA.
Fig. 5
Fig. 5 Left: sequence response of the diffraction efficiency for a PR device with a composition PTAA/PDCST/TAA/PCBM/OXD-7 (43.5/35/20/0.5/1) under a rectangular applied field at a frequency of 100 Hz (from 0 to 60 V μm−1). Right: one cycle response.
Fig. 6
Fig. 6 The same PR response for a shorter time on a logarithmic time scale. The fitting parameter is included.
Fig. 7
Fig. 7 Left: sequence response of the diffraction efficiency for a PR device with a composition PTAA/PDCST/TAA/PCBM/BPhen (43.5/35/20/0.5/1) under a rectangular applied field at a frequency of 100 Hz (from 0 to 60 V μm−1). Right: one cycle response. Response time: 397 μs (β = 0.54). Decay time: 1294 μs (β = 0.85).
Fig. 8
Fig. 8 Effect of the photocurrent on the response times τ (closed circles) and τG (open circles) for the PTAA-based PR composites.

Tables (3)

Tables Icon

Table 1 HOMO and LUMO levels for three electron traps and PTAA.

Tables Icon

Table 2 PR quantities and parameters in the PTAA-based PR composites with second electron traps and without second electron traps (blank).

Tables Icon

Table 3 Photocurrent and related quantities in the PTAA-based PR composites with second electron traps.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

η(%)= I d I t + I d ×100
η= η 0 { 1exp[ ( t τ ) β ] }
η ext =ext( αL cos θ A )η
S= η ext Iτ
Γ= 1 L [ cos θ Α ln I 1 ( I 2 0) I 1 ( I 2 =0) cos θ Β ln I 2 ( I 1 0) I 2 ( I 1 =0) ]
φ ph ( E )= J ph hν e I 0 αL = σ ph E 0 hν e I 0 αL
φ ph ( E )=G η p = ε r ε 0 E 0 η p eL T i
E q = e T i ε r ε 0 K G
E SC = E q ( E D 2 + E p 2 E p 2 + ( E q + E D ) 2 ) 1/2
τ G = T i ( α η p I 0 hν )
τ G = ε r ε 0 σ ph
τ= T i N c

Metrics