Abstract

We explore the limits of the photosensitive response of thin, 15 to 35 nm, films of complex azobenzene dyes. They show high refractive index, reaching 1.8, and significant photo-induced birefringence. We have successfully recorded strong, birefringent phase gratings with visible light and used the diffraction efficiency measurements to monitor their temporal evolution. The photo-induced gratings in such thin films were found not to be associated with any periodic surface relief, a typical feature in thicker azobenzene layers.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index gratings in electro-optic polymer thin films

D. Bogunovic, S. G. Raymond, S. Janssens, D. Clarke, O. Bodley, S. Ashforth, M. C. Simpson, and J. W. Quilty
Appl. Opt. 55(17) 4676-4682 (2016)

Polarization holographic and surface-relief gratings at 257 nm in an amorphous azobenzene polyester

P. S. Ramanujam, L. Nedelchev, and A. Matharu
Opt. Lett. 28(13) 1072-1074 (2003)

Photo- and electro-isomerization of azobenzenes based on polymer-dispersed liquid crystals doped with azobenzenes and their applications

Yen-Chen Liu, Ko-Ting Cheng, Hsin-Fu Chen, and Andy Ying-Guey Fuh
Opt. Express 22(4) 4404-4411 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Part B: Polym. Phys. 52, 163–182 (2014).
    [Crossref]
  2. J. Griffiths, “Photochemistry of azobenzene and its derivatives,” Chem. Soc. Rev. 1, 481–493 (1972).
    [Crossref]
  3. F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
    [Crossref] [PubMed]
  4. G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
    [Crossref]
  5. S. Hosotte and M. Dumont, “Orientational relaxation of photomerocyanine molecules in polymeric films,” Synth. Met. 81, 125–127 (1996).
    [Crossref]
  6. J. Kauppo, “Photoalignment control and surface-relief gratings in commercial azobenzene-based photoalignment layers,” Bachelor’s thesis thesis supervisor: Prof. Matti Kaivola thesis advisor: D.Sc. (Tech.) Arri Priimägi, School of Science, Aalto University (2014).
  7. M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in “Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects,” R. A. Lessard, ed. (SPIE-Intl Soc Optical Eng, 1994).
    [Crossref]
  8. L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid crystals,” Opt. Mat. 18, 91–94 (2001).
    [Crossref]
  9. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, V. G. Chigrinov, and H. S. Kwok, “Study of azo dye surface command photoalignment material for photonics applications,” Appl. Opt. 49, 1720–1727 (2010).
    [Crossref] [PubMed]
  10. L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
    [Crossref]
  11. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108, 033101 (2010).
    [Crossref]
  12. G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
    [Crossref]
  13. F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Analyses of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
    [Crossref]
  14. J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
    [Crossref]
  15. O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
    [Crossref]
  16. F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams,” J. Phys. Chem. B 103, 6690–6699 (1999).
    [Crossref]
  17. F. Lagugné Labarthet, P. Rochon, and A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
    [Crossref]
  18. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Scientific reports 4, 1–4 (2014).
  19. N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66, 167–174 (2017).
    [Crossref]
  20. F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
    [Crossref]
  21. L. Miccio, M. Paturzo, A. Finizio, and P. Ferraro, “Light induced patterning of poly(dimethylsiloxane) microstructures,” Opt. Express 18, 10947–10955 (2010).
    [Crossref] [PubMed]
  22. A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
    [Crossref]
  23. Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).
    [Crossref]
  24. O. Yaroshchuk and Y. A. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” Journal of Materials Chemistry 22, 286–300 (2012).
    [Crossref]
  25. K. L. Marshall, O. Didovets, and D. Saulnier, “Contact-angle measurements as a means of probing the surface alignment characteristics of liquid crystal materials on photoalignment layers,” in “Liquid Crystals XVIII,” I. C. Khoo, ed. (SPIE, 2014).
  26. S. Serak, T. Bunning, and N. Tabiryan, “Ultrafast photoalignment: Recording a lens in a nanosecond,” Crystals 7, 338 (2017).
    [Crossref]
  27. M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents,” J. Chromatogr. A 846, 317–329 (1999).
    [Crossref] [PubMed]
  28. E. A. Harland, G. Tompkins, and Irene, eds., Handbook of Ellipsometry (William Andrew, Inc, 2005).
  29. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
    [Crossref]
  30. Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3,” Opt. Express 17, 18681–18692 (2009).
    [Crossref]
  31. M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
    [Crossref]
  32. J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).
    [Crossref]
  33. G. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
    [Crossref]
  34. O. M. Tanchak and C. J. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect,” Macromolecules 38, 10566–10570 (2005).
    [Crossref]
  35. C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 1,” Proc. Indian Acad. Sci. 2, 406–412 (1935).
  36. C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 2,” Proc. Indian Acad. Sci. 2, 413–420 (1935).
  37. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am. 68, 806 (1978).
    [Crossref]

2017 (2)

N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66, 167–174 (2017).
[Crossref]

S. Serak, T. Bunning, and N. Tabiryan, “Ultrafast photoalignment: Recording a lens in a nanosecond,” Crystals 7, 338 (2017).
[Crossref]

2015 (2)

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
[Crossref]

2014 (3)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Part B: Polym. Phys. 52, 163–182 (2014).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Scientific reports 4, 1–4 (2014).

Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).
[Crossref]

2013 (1)

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

2012 (2)

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

O. Yaroshchuk and Y. A. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” Journal of Materials Chemistry 22, 286–300 (2012).
[Crossref]

2010 (4)

L. Miccio, M. Paturzo, A. Finizio, and P. Ferraro, “Light induced patterning of poly(dimethylsiloxane) microstructures,” Opt. Express 18, 10947–10955 (2010).
[Crossref] [PubMed]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108, 033101 (2010).
[Crossref]

G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, V. G. Chigrinov, and H. S. Kwok, “Study of azo dye surface command photoalignment material for photonics applications,” Appl. Opt. 49, 1720–1727 (2010).
[Crossref] [PubMed]

2009 (2)

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3,” Opt. Express 17, 18681–18692 (2009).
[Crossref]

J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).
[Crossref]

2008 (1)

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

2007 (1)

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

2006 (1)

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

2005 (1)

O. M. Tanchak and C. J. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect,” Macromolecules 38, 10566–10570 (2005).
[Crossref]

2001 (1)

L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid crystals,” Opt. Mat. 18, 91–94 (2001).
[Crossref]

1999 (3)

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams,” J. Phys. Chem. B 103, 6690–6699 (1999).
[Crossref]

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[Crossref]

M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents,” J. Chromatogr. A 846, 317–329 (1999).
[Crossref] [PubMed]

1998 (1)

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Analyses of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

1996 (1)

S. Hosotte and M. Dumont, “Orientational relaxation of photomerocyanine molecules in polymeric films,” Synth. Met. 81, 125–127 (1996).
[Crossref]

1993 (1)

G. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[Crossref]

1989 (1)

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[Crossref]

1978 (1)

1972 (1)

J. Griffiths, “Photochemistry of azobenzene and its derivatives,” Chem. Soc. Rev. 1, 481–493 (1972).
[Crossref]

1935 (2)

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 1,” Proc. Indian Acad. Sci. 2, 406–412 (1935).

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 2,” Proc. Indian Acad. Sci. 2, 413–420 (1935).

Al-Hujran, T. A.

O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
[Crossref]

Baker, J. H.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

Barrett, C. J.

O. M. Tanchak and C. J. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect,” Macromolecules 38, 10566–10570 (2005).
[Crossref]

Bennani, O. R.

O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
[Crossref]

Bouzige, M.

M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents,” J. Chromatogr. A 846, 317–329 (1999).
[Crossref] [PubMed]

Buffeteau, T.

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams,” J. Phys. Chem. B 103, 6690–6699 (1999).
[Crossref]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Analyses of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

Bunning, T.

S. Serak, T. Bunning, and N. Tabiryan, “Ultrafast photoalignment: Recording a lens in a nanosecond,” Crystals 7, 338 (2017).
[Crossref]

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Burgi, T.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Carta, D.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Chigrinov, V.

Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).
[Crossref]

Chigrinov, V. G.

Ciuchi, F.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Colella, V.

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

Convey, D.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

Cunningham, A.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Cupelli, D.

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

De Filpo, G.

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

De Sio, L.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Didovets, O.

K. L. Marshall, O. Didovets, and D. Saulnier, “Contact-angle measurements as a means of probing the surface alignment characteristics of liquid crystal materials on photoalignment layers,” in “Liquid Crystals XVIII,” I. C. Khoo, ed. (SPIE, 2014).

Dumont, M.

S. Hosotte and M. Dumont, “Orientational relaxation of photomerocyanine molecules in polymeric films,” Synth. Met. 81, 125–127 (1996).
[Crossref]

Dumont, M. L.

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in “Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects,” R. A. Lessard, ed. (SPIE-Intl Soc Optical Eng, 1994).
[Crossref]

Eason, R. W.

Engeln, R.

J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).
[Crossref]

Faul, C. F. J.

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Ferraro, P.

Finizio, A.

Formoso, P.

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

Frey, L.

L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid crystals,” Opt. Mat. 18, 91–94 (2001).
[Crossref]

Froc, G.

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in “Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects,” R. A. Lessard, ed. (SPIE-Intl Soc Optical Eng, 1994).
[Crossref]

Gao, J.

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

Gaylord, T. K.

Griffiths, J.

J. Griffiths, “Photochemistry of azobenzene and its derivatives,” Chem. Soc. Rev. 1, 481–493 (1972).
[Crossref]

Grote, J. G.

G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
[Crossref]

Gugliuzza, A.

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

Guo, Q.

Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).
[Crossref]

Gupta, I.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Häckel, M.

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Hansen, T. A. R.

J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).
[Crossref]

He, Y.

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

Heino, M. T.

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Hennion, M.-C.

M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents,” J. Chromatogr. A 846, 317–329 (1999).
[Crossref] [PubMed]

Hilfiker, J. N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

Hosotte, S.

S. Hosotte and M. Dumont, “Orientational relaxation of photomerocyanine molecules in polymeric films,” Synth. Met. 81, 125–127 (1996).
[Crossref]

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in “Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects,” R. A. Lessard, ed. (SPIE-Intl Soc Optical Eng, 1994).
[Crossref]

Ikkala, O.

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Jellison, G.

G. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[Crossref]

Jonathan, J. M.

L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid crystals,” Opt. Mat. 18, 91–94 (2001).
[Crossref]

Juman, G.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Scientific reports 4, 1–4 (2014).

Kaczmarek, M.

L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid crystals,” Opt. Mat. 18, 91–94 (2001).
[Crossref]

Kador, L.

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Kaivola, M.

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Kauppo, J.

J. Kauppo, “Photoalignment control and surface-relief gratings in commercial azobenzene-based photoalignment layers,” Bachelor’s thesis thesis supervisor: Prof. Matti Kaivola thesis advisor: D.Sc. (Tech.) Arri Priimägi, School of Science, Aalto University (2014).

Kauranen, M.

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Khiat, A.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Kimball, B. R.

Klein, G.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Kropp, D.

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Kumar, G. S.

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[Crossref]

Kwok, H.

Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).
[Crossref]

Kwok, H. S.

Lagugné Labarthet, F.

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[Crossref]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams,” J. Phys. Chem. B 103, 6690–6699 (1999).
[Crossref]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Analyses of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

Lebel, O.

O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
[Crossref]

Legeay, P.

M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents,” J. Chromatogr. A 846, 317–329 (1999).
[Crossref] [PubMed]

Liu, F.

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

Magnusson, R.

Mailis, S.

Marshall, K. L.

K. L. Marshall, O. Didovets, and D. Saulnier, “Contact-angle measurements as a means of probing the surface alignment characteristics of liquid crystal materials on photoalignment layers,” in “Liquid Crystals XVIII,” I. C. Khoo, ed. (SPIE, 2014).

Miccio, L.

Miniewicz, A.

G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
[Crossref]

Mitus, A. C.

G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
[Crossref]

Miyamoto, K.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Scientific reports 4, 1–4 (2014).

Mysliwiec, J.

G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
[Crossref]

Natansohn, A.

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[Crossref]

Nath, N. N.

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 2,” Proc. Indian Acad. Sci. 2, 413–420 (1935).

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 1,” Proc. Indian Acad. Sci. 2, 406–412 (1935).

Neckers, D. C.

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[Crossref]

Nersisyan, S.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108, 033101 (2010).
[Crossref]

Nersisyan, S. R.

Nicoletta, F. P.

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

Nunzi, J.-M.

O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
[Crossref]

Ober, C. K.

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Omatsu, T.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Scientific reports 4, 1–4 (2014).

Paik, M. Y.

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Paturzo, M.

Pawlik, G.

G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
[Crossref]

Pichon, V.

M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents,” J. Chromatogr. A 846, 317–329 (1999).
[Crossref] [PubMed]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Part B: Polym. Phys. 52, 163–182 (2014).
[Crossref]

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Prodromakis, T.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Raman, C.

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 2,” Proc. Indian Acad. Sci. 2, 413–420 (1935).

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 1,” Proc. Indian Acad. Sci. 2, 406–412 (1935).

Regoutz, A.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Reznikov, Y. A.

O. Yaroshchuk and Y. A. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” Journal of Materials Chemistry 22, 286–300 (2012).
[Crossref]

Rochon, P.

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[Crossref]

Rodriguez, F. J.

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Roosen, G.

L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid crystals,” Opt. Mat. 18, 91–94 (2001).
[Crossref]

Sabat, R. G.

O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
[Crossref]

Saulnier, D.

K. L. Marshall, O. Didovets, and D. Saulnier, “Contact-angle measurements as a means of probing the surface alignment characteristics of liquid crystal materials on photoalignment layers,” in “Liquid Crystals XVIII,” I. C. Khoo, ed. (SPIE, 2014).

Schmidt, H. W.

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Sekkat, Z.

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in “Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects,” R. A. Lessard, ed. (SPIE-Intl Soc Optical Eng, 1994).
[Crossref]

Serak, S.

S. Serak, T. Bunning, and N. Tabiryan, “Ultrafast photoalignment: Recording a lens in a nanosecond,” Crystals 7, 338 (2017).
[Crossref]

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Serb, A.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Part B: Polym. Phys. 52, 163–182 (2014).
[Crossref]

Singh, N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

Smith, S. M.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

Sones, C. L.

Sourisseau, C.

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams,” J. Phys. Chem. B 103, 6690–6699 (1999).
[Crossref]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Analyses of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

Srivastava, A.

Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).
[Crossref]

Steeves, D. M.

Tabiryan, N.

S. Serak, T. Bunning, and N. Tabiryan, “Ultrafast photoalignment: Recording a lens in a nanosecond,” Crystals 7, 338 (2017).
[Crossref]

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108, 033101 (2010).
[Crossref]

Tabiryan, N. V.

Tanchak, O. M.

O. M. Tanchak and C. J. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect,” Macromolecules 38, 10566–10570 (2005).
[Crossref]

Tiwald, T.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

Tompkins, H. G.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

Tone, C. M.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Trapatseli, M.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Tsutsumi, N.

N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66, 167–174 (2017).
[Crossref]

Umeton, C.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

Valdivia, C. E.

van de Sanden, M. C. M.

J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).
[Crossref]

Vapaavuori, J.

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

Wang, X.

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

Wang, Z.

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

Watabe, M.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Scientific reports 4, 1–4 (2014).

Weber, J. W.

J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).
[Crossref]

Yaroshchuk, O.

O. Yaroshchuk and Y. A. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” Journal of Materials Chemistry 22, 286–300 (2012).
[Crossref]

Ying, Y. J.

You, F.

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Zhang, X.

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

Adv. Funct. Mater. (1)

F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[Crossref]

Chem. Mater. (2)

A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).
[Crossref]

J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).
[Crossref]

Chem. Rev. (1)

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[Crossref]

Chem. Soc. Rev. (1)

J. Griffiths, “Photochemistry of azobenzene and its derivatives,” Chem. Soc. Rev. 1, 481–493 (1972).
[Crossref]

Chemical Physics Letters (1)

G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).
[Crossref]

Crystals (1)

S. Serak, T. Bunning, and N. Tabiryan, “Ultrafast photoalignment: Recording a lens in a nanosecond,” Crystals 7, 338 (2017).
[Crossref]

J. Appl. Phys. (2)

J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).
[Crossref]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108, 033101 (2010).
[Crossref]

J. Chromatogr. A (1)

M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents,” J. Chromatogr. A 846, 317–329 (1999).
[Crossref] [PubMed]

J. Mater. Chem. C (1)

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C 1, 7483–7487 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (2)

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Analyses of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams,” J. Phys. Chem. B 103, 6690–6699 (1999).
[Crossref]

J. Polym. Sci. Part B: Polym. Phys. (1)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Part B: Polym. Phys. 52, 163–182 (2014).
[Crossref]

Journal of Materials Chemistry (1)

O. Yaroshchuk and Y. A. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” Journal of Materials Chemistry 22, 286–300 (2012).
[Crossref]

Liq. Cryst. (1)

Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).
[Crossref]

Macromolecules (1)

O. M. Tanchak and C. J. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect,” Macromolecules 38, 10566–10570 (2005).
[Crossref]

Membranes (1)

F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer membranes: A review,” Membranes 2, 134–197 (2012).
[Crossref] [PubMed]

New J. Chem. (1)

O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).
[Crossref]

Opt. Express (2)

Opt. Mat. (1)

L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid crystals,” Opt. Mat. 18, 91–94 (2001).
[Crossref]

Polym. Int. (1)

N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym. Int. 66, 167–174 (2017).
[Crossref]

Proc. Indian Acad. Sci. (2)

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 1,” Proc. Indian Acad. Sci. 2, 406–412 (1935).

C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 2,” Proc. Indian Acad. Sci. 2, 413–420 (1935).

Scientific reports (1)

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Scientific reports 4, 1–4 (2014).

Synth. Met. (1)

S. Hosotte and M. Dumont, “Orientational relaxation of photomerocyanine molecules in polymeric films,” Synth. Met. 81, 125–127 (1996).
[Crossref]

The Journal of Physical Chemistry C (1)

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force microscopy investigation of switching thresholds in titanium dioxide thin films,” The Journal of Physical Chemistry C 119, 11958–11964 (2015).
[Crossref]

Thin Solid Films (1)

G. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[Crossref]

Other (5)

E. A. Harland, G. Tompkins, and Irene, eds., Handbook of Ellipsometry (William Andrew, Inc, 2005).

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516, 7979–7989 (2008). Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of advanced materials and devices {II}Warsaw, Poland.
[Crossref]

K. L. Marshall, O. Didovets, and D. Saulnier, “Contact-angle measurements as a means of probing the surface alignment characteristics of liquid crystal materials on photoalignment layers,” in “Liquid Crystals XVIII,” I. C. Khoo, ed. (SPIE, 2014).

J. Kauppo, “Photoalignment control and surface-relief gratings in commercial azobenzene-based photoalignment layers,” Bachelor’s thesis thesis supervisor: Prof. Matti Kaivola thesis advisor: D.Sc. (Tech.) Arri Priimägi, School of Science, Aalto University (2014).

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in “Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects,” R. A. Lessard, ed. (SPIE-Intl Soc Optical Eng, 1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic representation of the photo-chemical isomerization between trans- and cis-forms in azobenzene based materials [3].
Fig. 2
Fig. 2 A 514.5 nm Ar+ laser was used for writing the gratings and a He-Ne laser at 632.8 nm was used for monitoring the diffraction efficiency (η). The laser powers are measured at the surface of the sample.
Fig. 3
Fig. 3 Complex refractive index, n + ik, of 22D on ITO/glass substrate determined by ellipsometry. The same absorption peaks were observed with absorption spectroscopy at 375 nm and 460 nm.
Fig. 4
Fig. 4 Normalized intensity of the first diffracted order as a function of time for 22D and 22E (left), and 22N (right).

Tables (3)

Tables Icon

Table 1 Average thicknesses of films made of the three different materials (22D, 22N and 22E), spin coated at different speeds measured using a profilometer. The errors were calculated by taking the standard deviation of measurements at different locations across each sample.

Tables Icon

Table 2 Middle column - Absorption peaks of the three different PAAD materials as determined by spectrometric measurements. Right column - Average refractive index in the range 800 to 1400 nm determined using ellipsometry.

Tables Icon

Table 3 Diffraction efficiency of three different PAAD dyes for linear polarization of the probe beam perpendicular (third column) or parallel (fourth column) to the plane of incidence. The second column lists the film thickness for the samples used for these measurements, while the last two columns list the birefringence parameter estimated using equation (1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = J 1 2 ( 2 π Δ n d λ cos ( θ ) ) Δ n λ cos ( θ ) π d η .
n eff ( θ ) = n o n e n o 2 cos 2 ( θ ) + n e 2 sin 2 ( θ ) .
Δ n ( 3 D ) = n o + n e 2 n I ( 3 D ) = n e n o 6 , Δ n ( 3 D ) = n I ( 3 D ) n o = n e n o 3 .

Metrics