Abstract

Vanadium-doped ZnTe (ZnTe:V) crystals 30 mm in diameter and 45 mm in length were grown by the temperature gradient solution growth method. The band gap of as-grown ZnTe:V crystals was estimated to be about 2.22 eV. Infrared spectra exhibit a mean transmittance of 50%-60% in the wavenumber range from 500 cm−1 to 4000 cm−1. Compared with the intrinsic ZnTe crystal, the resistivity of ZnTe:V is increased 6-7 orders of magnitude up to 109 Ω·cm and the carrier concentration reduced from 1014 to 108 cm−3. Accordingly, the THz detection sensitivity is also enhanced by 20%-30%. The improvements on the optical and electrical properties were attributed to the compensation of Zn vacancies by the vanadium element.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of ZnTe bulk crystals grown by the temperature gradient solvent method using elemental and compound materials

Yadong Xu, Wei Bai, Lijian Guo, Leilei Ji, Bao Xiao, Caihong Zhang, Biaobing Jin, and Wanqi Jie
Opt. Mater. Express 6(10) 3309-3319 (2016)

Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well

Chia-Ying Su, Meng-Che Tsai, Keng-Ping Chou, Hsin-Chun Chiang, Huang-Hui Lin, Ming-Yen Su, Yuh-Renn Wu, Yean-Woei Kiang, and C. C. Yang
Opt. Express 25(22) 26365-26377 (2017)

Flexible InGaN nanowire membranes for enhanced solar water splitting

Rami T. ElAfandy, Mohamed Ebaid, Jung-Wook Min, Chao Zhao, Tien Khee Ng, and Boon S. Ooi
Opt. Express 26(14) A640-A650 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
    [Crossref]
  2. A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
    [Crossref]
  3. T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
    [Crossref]
  4. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  5. K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
    [Crossref]
  6. Y. Seki, K. Sato, and O. Oda, “Solution growth of ZnTe single crystals by the vertical Bridgman method using a hetero-seeding technique,” J. Cryst. Growth 171(1–2), 32–38 (1997).
    [Crossref]
  7. R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
    [Crossref]
  8. S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers,” Opt. Mater. Express 1(5), 898–910 (2011).
    [Crossref]
  9. M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
    [Crossref]
  10. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5(9), 1980–1988 (1988).
    [Crossref]
  11. J. E. Millerd, N. J. Brock, M. S. Brown, P. A. Debarber, and S. Trivedi, “Resonant holographic interferometry with ZnTe:V:Mn,” Appl. Opt. 35(26), 5275–5285 (1996).
    [Crossref] [PubMed]
  12. M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A near-field-sensing transceiver for intrabody communication based on the electrooptic effect,” IEEE Trans. Instrum. Meas. 53(6), 1533–1538 (2004).
    [Crossref]
  13. T. Asahi, A. Arakawa, and K. Sato, “Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method,” J. Cryst. Growth 229(1), 74–78 (2001).
    [Crossref]
  14. T. Asahi, T. Yabe, K. Sato, and A. Arakawa, “Growth of large diameter ZnTe single crystals by the LEK method,” J. Alloys Compd. 371(1), 2–5 (2004).
    [Crossref]
  15. K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
    [Crossref]
  16. Y. V. Korostelin, V. Kozlovsky, and P. Shapkin, “Seeded-vapour-phase free growth and characterization of ZnTe single crystals,” J. Cryst. Growth 214-215, 870–874 (2000).
    [Crossref]
  17. K. Sato, Y. Seki, and O. Oda, “Solution growth combined with solvent evaporation: A novel technique in solution growth,” Jpn. J. Appl. Phys. 38(1), 5772–5774 (1999).
    [Crossref]
  18. W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
    [Crossref]
  19. A. Mycielski, E. Łusakowska, A. Szadkowski, and L. Kowalczyk, “Low defect density, substrate quality crystals of the wide-gap II–VI compounds, obtained by physical vapour transport technique (PVT),” J. Cryst. Growth 184, 1044–1047 (1998).
  20. J. Carides and A. Fischer, “The phase diagram of zinc telluride,” Solid State Commun. 2(8), 217–218 (1964).
    [Crossref]
  21. J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10, 569–585 (1972).
    [Crossref]
  22. K. Patel, G. Solanki, J. Gandhi, and S. Patel, “Growth and Characterization of ZnTe Crystals Grown by Physical Vapor Transport Technique,” Chalcogenide Lett. 6(8), 393–398 (2009).
  23. R. Bylsma, P. Bridenbaugh, D. Olson, and A. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51(12), 889–891 (1987).
    [Crossref]
  24. R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
    [Crossref]
  25. D. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35(3), 539–542 (1964).
    [Crossref]
  26. K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73(2), 926–931 (1993).
    [Crossref]
  27. M. Grundmann, Physics of Semiconductors (Springer, 2010).
  28. S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
    [Crossref]
  29. Y. Li, Z. Gu, G. Li, and W. Jie, “Infrared transmission spectra of Cd1−xZnxTe (x= 0.04) crystals,” J. Electron. Mater. 33(8), 861–866 (2004).
    [Crossref]
  30. C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
    [Crossref]
  31. S. Bhunia and D. Bose, “Microwave synthesis, single crystal growth and characterization of ZnTe,” J. Cryst. Growth 186(4), 535–542 (1998).
    [Crossref]
  32. A. Jordan and R. Zupp, “Calculation of the Minimum Pressure, P‐T Diagrams, and Solidus of ZnTe,” J. Electrochem. Soc. 116(9), 1264–1269 (1969).
    [Crossref]
  33. P. Slodowy and J. Baranowski, “Absorption spectra of Ti (d2), V (d3), and Cr (d4) ions in CdTe,” Phys. Status Solidi 49(2), 499–503 (1972).
    [Crossref]
  34. A. Zunger, “Electronic structure of 3d transition-atom impurities in semiconductors,” Solid State Phys. 39, 275–464 (1986).
    [Crossref]
  35. R. E. Nahory and H. Fan, “Optical properties of zinc telluride,” Phys. Rev. 156(3), 825–833 (1967).
    [Crossref]
  36. J. Irwin and J. LaCombe, “Raman scattering in ZnTe,” J. Appl. Phys. 41(4), 1444–1450 (1970).
    [Crossref]
  37. S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
    [Crossref]
  38. S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
    [Crossref]
  39. S. A. Ku, C. M. Tu, W. C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21(12), 13930–13937 (2013).
    [Crossref] [PubMed]
  40. K. Liu, H. S. Kang, T. K. Kim, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81(22), 4115–4117 (2002).
    [Crossref]

2013 (2)

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

S. A. Ku, C. M. Tu, W. C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21(12), 13930–13937 (2013).
[Crossref] [PubMed]

2012 (1)

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

2011 (1)

2010 (1)

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

2009 (2)

T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
[Crossref]

K. Patel, G. Solanki, J. Gandhi, and S. Patel, “Growth and Characterization of ZnTe Crystals Grown by Physical Vapor Transport Technique,” Chalcogenide Lett. 6(8), 393–398 (2009).

2004 (5)

Y. Li, Z. Gu, G. Li, and W. Jie, “Infrared transmission spectra of Cd1−xZnxTe (x= 0.04) crystals,” J. Electron. Mater. 33(8), 861–866 (2004).
[Crossref]

M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A near-field-sensing transceiver for intrabody communication based on the electrooptic effect,” IEEE Trans. Instrum. Meas. 53(6), 1533–1538 (2004).
[Crossref]

T. Asahi, T. Yabe, K. Sato, and A. Arakawa, “Growth of large diameter ZnTe single crystals by the LEK method,” J. Alloys Compd. 371(1), 2–5 (2004).
[Crossref]

W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
[Crossref]

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

K. Liu, H. S. Kang, T. K. Kim, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81(22), 4115–4117 (2002).
[Crossref]

2001 (2)

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

T. Asahi, A. Arakawa, and K. Sato, “Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method,” J. Cryst. Growth 229(1), 74–78 (2001).
[Crossref]

2000 (2)

Y. V. Korostelin, V. Kozlovsky, and P. Shapkin, “Seeded-vapour-phase free growth and characterization of ZnTe single crystals,” J. Cryst. Growth 214-215, 870–874 (2000).
[Crossref]

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

1999 (1)

K. Sato, Y. Seki, and O. Oda, “Solution growth combined with solvent evaporation: A novel technique in solution growth,” Jpn. J. Appl. Phys. 38(1), 5772–5774 (1999).
[Crossref]

1998 (2)

A. Mycielski, E. Łusakowska, A. Szadkowski, and L. Kowalczyk, “Low defect density, substrate quality crystals of the wide-gap II–VI compounds, obtained by physical vapour transport technique (PVT),” J. Cryst. Growth 184, 1044–1047 (1998).

S. Bhunia and D. Bose, “Microwave synthesis, single crystal growth and characterization of ZnTe,” J. Cryst. Growth 186(4), 535–542 (1998).
[Crossref]

1997 (3)

Y. Seki, K. Sato, and O. Oda, “Solution growth of ZnTe single crystals by the vertical Bridgman method using a hetero-seeding technique,” J. Cryst. Growth 171(1–2), 32–38 (1997).
[Crossref]

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

1996 (1)

1994 (1)

R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
[Crossref]

1993 (2)

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73(2), 926–931 (1993).
[Crossref]

1992 (1)

M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
[Crossref]

1988 (1)

1987 (1)

R. Bylsma, P. Bridenbaugh, D. Olson, and A. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51(12), 889–891 (1987).
[Crossref]

1986 (1)

A. Zunger, “Electronic structure of 3d transition-atom impurities in semiconductors,” Solid State Phys. 39, 275–464 (1986).
[Crossref]

1972 (2)

P. Slodowy and J. Baranowski, “Absorption spectra of Ti (d2), V (d3), and Cr (d4) ions in CdTe,” Phys. Status Solidi 49(2), 499–503 (1972).
[Crossref]

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10, 569–585 (1972).
[Crossref]

1970 (1)

J. Irwin and J. LaCombe, “Raman scattering in ZnTe,” J. Appl. Phys. 41(4), 1444–1450 (1970).
[Crossref]

1969 (1)

A. Jordan and R. Zupp, “Calculation of the Minimum Pressure, P‐T Diagrams, and Solidus of ZnTe,” J. Electrochem. Soc. 116(9), 1264–1269 (1969).
[Crossref]

1967 (1)

R. E. Nahory and H. Fan, “Optical properties of zinc telluride,” Phys. Rev. 156(3), 825–833 (1967).
[Crossref]

1964 (2)

D. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35(3), 539–542 (1964).
[Crossref]

J. Carides and A. Fischer, “The phase diagram of zinc telluride,” Solid State Commun. 2(8), 217–218 (1964).
[Crossref]

Adachi, S.

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73(2), 926–931 (1993).
[Crossref]

Anandan, M.

R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
[Crossref]

Aoki, M.

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

Arakawa, A.

T. Asahi, T. Yabe, K. Sato, and A. Arakawa, “Growth of large diameter ZnTe single crystals by the LEK method,” J. Alloys Compd. 371(1), 2–5 (2004).
[Crossref]

T. Asahi, A. Arakawa, and K. Sato, “Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method,” J. Cryst. Growth 229(1), 74–78 (2001).
[Crossref]

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

Asahi, T.

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

T. Asahi, T. Yabe, K. Sato, and A. Arakawa, “Growth of large diameter ZnTe single crystals by the LEK method,” J. Alloys Compd. 371(1), 2–5 (2004).
[Crossref]

T. Asahi, A. Arakawa, and K. Sato, “Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method,” J. Cryst. Growth 229(1), 74–78 (2001).
[Crossref]

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

Bagai, R.

R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
[Crossref]

Baranowski, J.

P. Slodowy and J. Baranowski, “Absorption spectra of Ti (d2), V (d3), and Cr (d4) ions in CdTe,” Phys. Status Solidi 49(2), 499–503 (1972).
[Crossref]

Bhunia, S.

S. Bhunia and D. Bose, “Microwave synthesis, single crystal growth and characterization of ZnTe,” J. Cryst. Growth 186(4), 535–542 (1998).
[Crossref]

Borle, W.

R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
[Crossref]

Bose, D.

S. Bhunia and D. Bose, “Microwave synthesis, single crystal growth and characterization of ZnTe,” J. Cryst. Growth 186(4), 535–542 (1998).
[Crossref]

Bridenbaugh, P.

R. Bylsma, P. Bridenbaugh, D. Olson, and A. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51(12), 889–891 (1987).
[Crossref]

Brock, N. J.

Brost, G.

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

Brown, M. S.

Burger, A.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Bylsma, R.

R. Bylsma, P. Bridenbaugh, D. Olson, and A. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51(12), 889–891 (1987).
[Crossref]

Carides, J.

J. Carides and A. Fischer, “The phase diagram of zinc telluride,” Solid State Commun. 2(8), 217–218 (1964).
[Crossref]

Chen, K. T.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Chi, C. C.

Chou, S. Y.

W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
[Crossref]

Chu, W. C.

Currie, M.

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

Curtis, C.

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

Debarber, P. A.

Deloach, L. D.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Dudley, M.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Fan, H.

R. E. Nahory and H. Fan, “Optical properties of zinc telluride,” Phys. Rev. 156(3), 825–833 (1967).
[Crossref]

Fedorov, V.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fischer, A.

J. Carides and A. Fischer, “The phase diagram of zinc telluride,” Solid State Commun. 2(8), 217–218 (1964).
[Crossref]

Fukumoto, M.

M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A near-field-sensing transceiver for intrabody communication based on the electrooptic effect,” IEEE Trans. Instrum. Meas. 53(6), 1533–1538 (2004).
[Crossref]

Gandhi, J.

K. Patel, G. Solanki, J. Gandhi, and S. Patel, “Growth and Characterization of ZnTe Crystals Grown by Physical Vapor Transport Technique,” Chalcogenide Lett. 6(8), 393–398 (2009).

Gapontsev, V.

Gillies, D.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Glass, A.

R. Bylsma, P. Bridenbaugh, D. Olson, and A. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51(12), 889–891 (1987).
[Crossref]

Grasza, K.

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

Gu, Z.

Y. Li, Z. Gu, G. Li, and W. Jie, “Infrared transmission spectra of Cd1−xZnxTe (x= 0.04) crystals,” J. Electron. Mater. 33(8), 861–866 (2004).
[Crossref]

Guo, Q.

T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
[Crossref]

Hagan, D. J.

Hanafusa, M.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

Harrel, S. M.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Hettich, H.

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

Hiromoto, N.

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

Hosako, I.

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

Irwin, J.

J. Irwin and J. LaCombe, “Raman scattering in ZnTe,” J. Appl. Phys. 41(4), 1444–1450 (1970).
[Crossref]

Jie, W.

Y. Li, Z. Gu, G. Li, and W. Jie, “Infrared transmission spectra of Cd1−xZnxTe (x= 0.04) crystals,” J. Electron. Mater. 33(8), 861–866 (2004).
[Crossref]

Jordan, A.

A. Jordan and R. Zupp, “Calculation of the Minimum Pressure, P‐T Diagrams, and Solidus of ZnTe,” J. Electrochem. Soc. 116(9), 1264–1269 (1969).
[Crossref]

Kalisher, M.

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

Kang, H. S.

K. Liu, H. S. Kang, T. K. Kim, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81(22), 4115–4117 (2002).
[Crossref]

Kim, T. K.

K. Liu, H. S. Kang, T. K. Kim, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81(22), 4115–4117 (2002).
[Crossref]

Klein, M. B.

M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
[Crossref]

Kobayashi, T.

Korostelin, Y. V.

Y. V. Korostelin, V. Kozlovsky, and P. Shapkin, “Seeded-vapour-phase free growth and characterization of ZnTe single crystals,” J. Cryst. Growth 214-215, 870–874 (2000).
[Crossref]

Kowalczyk, L.

A. Mycielski, E. Łusakowska, A. Szadkowski, and L. Kowalczyk, “Low defect density, substrate quality crystals of the wide-gap II–VI compounds, obtained by physical vapour transport technique (PVT),” J. Cryst. Growth 184, 1044–1047 (1998).

Kozlovsky, V.

Y. V. Korostelin, V. Kozlovsky, and P. Shapkin, “Seeded-vapour-phase free growth and characterization of ZnTe single crystals,” J. Cryst. Growth 214-215, 870–874 (2000).
[Crossref]

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Ku, S. A.

Kutcher, S.

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

Kyuragi, H.

M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A near-field-sensing transceiver for intrabody communication based on the electrooptic effect,” IEEE Trans. Instrum. Meas. 53(6), 1533–1538 (2004).
[Crossref]

LaCombe, J.

J. Irwin and J. LaCombe, “Raman scattering in ZnTe,” J. Appl. Phys. 41(4), 1444–1450 (1970).
[Crossref]

Lan, S. M.

W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
[Crossref]

Lehoczky, S.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Li, G.

Y. Li, Z. Gu, G. Li, and W. Jie, “Infrared transmission spectra of Cd1−xZnxTe (x= 0.04) crystals,” J. Electron. Mater. 33(8), 861–866 (2004).
[Crossref]

Li, Y.

Y. Li, Z. Gu, G. Li, and W. Jie, “Infrared transmission spectra of Cd1−xZnxTe (x= 0.04) crystals,” J. Electron. Mater. 33(8), 861–866 (2004).
[Crossref]

Liao, S. M.

W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
[Crossref]

Liu, K.

K. Liu, H. S. Kang, T. K. Kim, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81(22), 4115–4117 (2002).
[Crossref]

Luo, C. W.

Luque, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Lusakowska, E.

A. Mycielski, E. Łusakowska, A. Szadkowski, and L. Kowalczyk, “Low defect density, substrate quality crystals of the wide-gap II–VI compounds, obtained by physical vapour transport technique (PVT),” J. Cryst. Growth 184, 1044–1047 (1998).

Mansour, K.

Marple, D.

D. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35(3), 539–542 (1964).
[Crossref]

Martí, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Martyshkin, D.

Menth, A.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10, 569–585 (1972).
[Crossref]

Millerd, J. E.

Milot, R. L.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Mirov, M.

Mirov, S. B.

Moskalev, I.

Mycielski, A.

A. Mycielski, E. Łusakowska, A. Szadkowski, and L. Kowalczyk, “Low defect density, substrate quality crystals of the wide-gap II–VI compounds, obtained by physical vapour transport technique (PVT),” J. Cryst. Growth 184, 1044–1047 (1998).

Nahory, R. E.

R. E. Nahory and H. Fan, “Optical properties of zinc telluride,” Phys. Rev. 156(3), 825–833 (1967).
[Crossref]

Nishio, M.

T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
[Crossref]

Noda, A.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

Ochiai, K.

M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A near-field-sensing transceiver for intrabody communication based on the electrooptic effect,” IEEE Trans. Instrum. Meas. 53(6), 1533–1538 (2004).
[Crossref]

Oda, O.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

K. Sato, Y. Seki, and O. Oda, “Solution growth combined with solvent evaporation: A novel technique in solution growth,” Jpn. J. Appl. Phys. 38(1), 5772–5774 (1999).
[Crossref]

Y. Seki, K. Sato, and O. Oda, “Solution growth of ZnTe single crystals by the vertical Bridgman method using a hetero-seeding technique,” J. Cryst. Growth 171(1–2), 32–38 (1997).
[Crossref]

Ogawa, H.

T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
[Crossref]

Ohishi, M.

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

Ohmori, K.

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

Olson, D.

R. Bylsma, P. Bridenbaugh, D. Olson, and A. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51(12), 889–891 (1987).
[Crossref]

Page, R. H.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Palosz, W.

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Patel, K.

K. Patel, G. Solanki, J. Gandhi, and S. Patel, “Growth and Characterization of ZnTe Crystals Grown by Physical Vapor Transport Technique,” Chalcogenide Lett. 6(8), 393–398 (2009).

Patel, S.

K. Patel, G. Solanki, J. Gandhi, and S. Patel, “Growth and Characterization of ZnTe Crystals Grown by Physical Vapor Transport Technique,” Chalcogenide Lett. 6(8), 393–398 (2009).

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Ranon, P. M.

M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
[Crossref]

Rhiger, D.

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

Saito, H.

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

Saito, K.

T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
[Crossref]

Sato, K.

T. Asahi, T. Yabe, K. Sato, and A. Arakawa, “Growth of large diameter ZnTe single crystals by the LEK method,” J. Alloys Compd. 371(1), 2–5 (2004).
[Crossref]

T. Asahi, A. Arakawa, and K. Sato, “Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method,” J. Cryst. Growth 229(1), 74–78 (2001).
[Crossref]

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

K. Sato, Y. Seki, and O. Oda, “Solution growth combined with solvent evaporation: A novel technique in solution growth,” Jpn. J. Appl. Phys. 38(1), 5772–5774 (1999).
[Crossref]

Y. Seki, K. Sato, and O. Oda, “Solution growth of ZnTe single crystals by the vertical Bridgman method using a hetero-seeding technique,” J. Cryst. Growth 171(1–2), 32–38 (1997).
[Crossref]

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73(2), 926–931 (1993).
[Crossref]

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Schleicher, J. M.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Schmuttenmaer, C. A.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Seki, Y.

K. Sato, Y. Seki, and O. Oda, “Solution growth combined with solvent evaporation: A novel technique in solution growth,” Jpn. J. Appl. Phys. 38(1), 5772–5774 (1999).
[Crossref]

Y. Seki, K. Sato, and O. Oda, “Solution growth of ZnTe single crystals by the vertical Bridgman method using a hetero-seeding technique,” J. Cryst. Growth 171(1–2), 32–38 (1997).
[Crossref]

Sen, S.

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

Shapkin, P.

Y. V. Korostelin, V. Kozlovsky, and P. Shapkin, “Seeded-vapour-phase free growth and characterization of ZnTe single crystals,” J. Cryst. Growth 214-215, 870–874 (2000).
[Crossref]

Shin, H. Y.

W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
[Crossref]

Shinagawa, M.

M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A near-field-sensing transceiver for intrabody communication based on the electrooptic effect,” IEEE Trans. Instrum. Meas. 53(6), 1533–1538 (2004).
[Crossref]

Slodowy, P.

P. Slodowy and J. Baranowski, “Absorption spectra of Ti (d2), V (d3), and Cr (d4) ions in CdTe,” Phys. Status Solidi 49(2), 499–503 (1972).
[Crossref]

Soileau, M.

Solanki, G.

K. Patel, G. Solanki, J. Gandhi, and S. Patel, “Growth and Characterization of ZnTe Crystals Grown by Physical Vapor Transport Technique,” Chalcogenide Lett. 6(8), 393–398 (2009).

Stanley, C.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Steier, W. H.

M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
[Crossref]

Su, C. H.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Sundersheshu, B.

R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
[Crossref]

Szadkowski, A.

A. Mycielski, E. Łusakowska, A. Szadkowski, and L. Kowalczyk, “Low defect density, substrate quality crystals of the wide-gap II–VI compounds, obtained by physical vapour transport technique (PVT),” J. Cryst. Growth 184, 1044–1047 (1998).

Szofran, F.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Takeda, M.

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

Tanaka, T.

T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
[Crossref]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Tauc, J.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10, 569–585 (1972).
[Crossref]

Tripathi, S. R.

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

Trivedi, S.

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

J. E. Millerd, N. J. Brock, M. S. Brown, P. A. Debarber, and S. Trivedi, “Resonant holographic interferometry with ZnTe:V:Mn,” Appl. Opt. 35(26), 5275–5285 (1996).
[Crossref] [PubMed]

M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
[Crossref]

Tu, C. M.

Uchida, M.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

Uen, W. Y.

W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
[Crossref]

Van Stryland, E. W.

Volz, M.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Wu, K. H.

Wu, Y. Y.

Yabe, T.

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

T. Asahi, T. Yabe, K. Sato, and A. Arakawa, “Growth of large diameter ZnTe single crystals by the LEK method,” J. Alloys Compd. 371(1), 2–5 (2004).
[Crossref]

Yabushita, A.

Yadava, R.

R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
[Crossref]

Yao, G. D.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Yoneta, M.

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

Yoshino, K.

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

Yu, Z.

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

Zhang, X. C.

K. Liu, H. S. Kang, T. K. Kim, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81(22), 4115–4117 (2002).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhou, W.

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

Ziari, M.

M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
[Crossref]

Zunger, A.

A. Zunger, “Electronic structure of 3d transition-atom impurities in semiconductors,” Solid State Phys. 39, 275–464 (1986).
[Crossref]

Zupp, R.

A. Jordan and R. Zupp, “Calculation of the Minimum Pressure, P‐T Diagrams, and Solidus of ZnTe,” J. Electrochem. Soc. 116(9), 1264–1269 (1969).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

T. Tanaka, K. Saito, M. Nishio, Q. Guo, and H. Ogawa, “Enhanced light output from ZnTe light emitting diodes by utilizing thin film structure,” Appl. Phys. Express 2(12), 122101 (2009).
[Crossref]

Appl. Phys. Lett. (3)

M. Ziari, W. H. Steier, P. M. Ranon, S. Trivedi, and M. B. Klein, “Photorefractivity in vanadium‐doped ZnTe,” Appl. Phys. Lett. 60(9), 1052–1054 (1992).
[Crossref]

R. Bylsma, P. Bridenbaugh, D. Olson, and A. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51(12), 889–891 (1987).
[Crossref]

K. Liu, H. S. Kang, T. K. Kim, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81(22), 4115–4117 (2002).
[Crossref]

Chalcogenide Lett. (1)

K. Patel, G. Solanki, J. Gandhi, and S. Patel, “Growth and Characterization of ZnTe Crystals Grown by Physical Vapor Transport Technique,” Chalcogenide Lett. 6(8), 393–398 (2009).

IEEE J. Quantum Electron. (1)

R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A near-field-sensing transceiver for intrabody communication based on the electrooptic effect,” IEEE Trans. Instrum. Meas. 53(6), 1533–1538 (2004).
[Crossref]

J. Alloys Compd. (1)

T. Asahi, T. Yabe, K. Sato, and A. Arakawa, “Growth of large diameter ZnTe single crystals by the LEK method,” J. Alloys Compd. 371(1), 2–5 (2004).
[Crossref]

J. Appl. Phys. (4)

D. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35(3), 539–542 (1964).
[Crossref]

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73(2), 926–931 (1993).
[Crossref]

J. Irwin and J. LaCombe, “Raman scattering in ZnTe,” J. Appl. Phys. 41(4), 1444–1450 (1970).
[Crossref]

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

J. Cryst. Growth (8)

C. H. Su, M. Volz, D. Gillies, F. Szofran, S. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1–4), 627–632 (1993).
[Crossref]

S. Bhunia and D. Bose, “Microwave synthesis, single crystal growth and characterization of ZnTe,” J. Cryst. Growth 186(4), 535–542 (1998).
[Crossref]

A. Mycielski, E. Łusakowska, A. Szadkowski, and L. Kowalczyk, “Low defect density, substrate quality crystals of the wide-gap II–VI compounds, obtained by physical vapour transport technique (PVT),” J. Cryst. Growth 184, 1044–1047 (1998).

K. Grasza, S. Trivedi, Z. Yu, S. Kutcher, W. Palosz, and G. Brost, “Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals,” J. Cryst. Growth 174(1–4), 719–725 (1997).
[Crossref]

Y. V. Korostelin, V. Kozlovsky, and P. Shapkin, “Seeded-vapour-phase free growth and characterization of ZnTe single crystals,” J. Cryst. Growth 214-215, 870–874 (2000).
[Crossref]

T. Asahi, A. Arakawa, and K. Sato, “Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method,” J. Cryst. Growth 229(1), 74–78 (2001).
[Crossref]

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214-215, 1080–1084 (2000).
[Crossref]

Y. Seki, K. Sato, and O. Oda, “Solution growth of ZnTe single crystals by the vertical Bridgman method using a hetero-seeding technique,” J. Cryst. Growth 171(1–2), 32–38 (1997).
[Crossref]

J. Electrochem. Soc. (1)

A. Jordan and R. Zupp, “Calculation of the Minimum Pressure, P‐T Diagrams, and Solidus of ZnTe,” J. Electrochem. Soc. 116(9), 1264–1269 (1969).
[Crossref]

J. Electron. Mater. (4)

S. Sen, D. Rhiger, C. Curtis, M. Kalisher, H. Hettich, and M. Currie, “Infrared absorption behavior in CdZnTe substrates,” J. Electron. Mater. 30(6), 611–618 (2001).
[Crossref]

Y. Li, Z. Gu, G. Li, and W. Jie, “Infrared transmission spectra of Cd1−xZnxTe (x= 0.04) crystals,” J. Electron. Mater. 33(8), 861–866 (2004).
[Crossref]

R. Yadava, B. Sundersheshu, M. Anandan, R. Bagai, and W. Borle, “Precipitation in CdTe crystals studied through mie scattering,” J. Electron. Mater. 23(12), 1349–1357 (1994).
[Crossref]

K. Yoshino, M. Yoneta, K. Ohmori, H. Saito, M. Ohishi, and T. Yabe, “Annealing effects of a high-quality ZnTe substrate,” J. Electron. Mater. 33(6), 579–582 (2004).
[Crossref]

J. Non-Cryst. Solids (1)

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8-10, 569–585 (1972).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

K. Sato, Y. Seki, and O. Oda, “Solution growth combined with solvent evaporation: A novel technique in solution growth,” Jpn. J. Appl. Phys. 38(1), 5772–5774 (1999).
[Crossref]

S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52(4R), 042401 (2013).
[Crossref]

Mater. Sci. Eng. B (1)

W. Y. Uen, S. Y. Chou, H. Y. Shin, S. M. Liao, and S. M. Lan, “Characterizations of ZnTe bulks grown by temperature gradient solution growth,” Mater. Sci. Eng. B 106(1), 27–32 (2004).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

R. E. Nahory and H. Fan, “Optical properties of zinc telluride,” Phys. Rev. 156(3), 825–833 (1967).
[Crossref]

Phys. Status Solidi (1)

P. Slodowy and J. Baranowski, “Absorption spectra of Ti (d2), V (d3), and Cr (d4) ions in CdTe,” Phys. Status Solidi 49(2), 499–503 (1972).
[Crossref]

Solid State Commun. (1)

J. Carides and A. Fischer, “The phase diagram of zinc telluride,” Solid State Commun. 2(8), 217–218 (1964).
[Crossref]

Solid State Phys. (1)

A. Zunger, “Electronic structure of 3d transition-atom impurities in semiconductors,” Solid State Phys. 39, 275–464 (1986).
[Crossref]

Other (1)

M. Grundmann, Physics of Semiconductors (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 ZnTe:VCOM crystal (a) As-grown ingot with dimension of Φ30 mm × 45 mm under intense incandescent light, (b) wafer sliced perpendicular to the growth direction, (c) X-ray rocking curve of <110> ZnTe:V crystal. The inset in (c) is the <110> ZnTe:V wafer.
Fig. 2
Fig. 2 Power X-ray diffraction patterns of Te-rich polycrystals and as-grown ZnTe:V crystal, respectively.
Fig. 3
Fig. 3 Typical UV-Vis-NIR transmittance spectra of ZnTe:VELE, ZnTe:VCOM and intrinsic ZnTe crystals at room temperature. The inset is the Tauc plot of (αhν)2 vs hν.
Fig. 4
Fig. 4 Typical IR transmittance spectra of ZnTe:VELE, ZnTe:VCOM and intrinsic ZnTe crystals.
Fig. 5
Fig. 5 Typical I-V curves of ZnTe:V and intrinsic ZnTe crystals.
Fig. 6
Fig. 6 THz properties of intrinsic ZnTe and ZnTe:VCOM crystals (a) THz detection frequency spectra; (b) THz transmission frequency spectra; (c) The transmission at 0.3-3 THz; (d) Refractive index at 0.3-3 THz.

Tables (1)

Tables Icon

Table 1 Electrical properties of ZnTe:VELE, ZnTe:VCOM and intrinsic ZnTe crystal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α h ν = A ( h ν E g ) m
T = ( 1 R ) 2 e α d 1 R 2 e 2 α d
R = ( n 1 ) 2 ( n + 1 ) 2
α = N e 3 4 π 2 c 3 n ε 0 m * 2 μ λ 2
Z n T e ( s ) = Z n ( g ) + 1 / 2 T e 2 ( g ) , K = P Z n P T e 2
E = E 0 ( 1 R ) e ( L / ( 2 c ρ ε 0 n ( ω ) ) + α 0 L / 2 )

Metrics