Abstract

A temperature-dependent Sellmeier equation for GaP, valid for wavelengths between 0.7 and 12.5 μm over a temperature range of 78 to 450 K, is presented. The temperature dependence values of the generated wavelengths in nonlinear frequency conversion calculated using this equation match well the experimentally measured values.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate

Ariel Bruner, David Eger, Moshe B. Oron, Pinhas Blau, Moti Katz, and Shlomo Ruschin
Opt. Lett. 28(3) 194-196 (2003)

Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol. % MgO-doped LiNbO3 in the terahertz range

Jens Kiessling, Karsten Buse, and Ingo Breunig
J. Opt. Soc. Am. B 30(4) 950-952 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Dean, G. Kaminsky, and R. B. Zetterstrom, “Intrinsic Optical Absorption of Gallium Phosphide Between 2.33 and 3.12 eV,” J. Appl. Phys. 38(9), 3551–3556 (1967).
    [Crossref]
  2. D. F. Parsons and P. D. Coleman, “Far Infrared Optical Constants of Gallium Phosphide,” Appl. Opt. 10(7), 1683 (1971).
    [PubMed]
  3. L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon., “1064-nm-Pumped Mid-Infrared Optical Parametric Oscillator Based on Orientation-Patterned Gallium Phosphide (OP-GaP),” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3O.4.
  4. D. J. Creeden, P. Schunemann, L. Pomeranz, K. Snell, and S. D. Setzler, “Long-wave Infrared Parametric Generation and Amplification in Orientation Patterned GaP ” in Advanced Solid State Lasers, OSA Technical Digest (2016), paper ATu5A.
  5. P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “First OPO Based on Orientation-Patterned Gallium Phosphide (OP-GaP)”, in CLEO:2015, OSA Technical Digest (Optical Society of America, 2015), paper SW3O.1.
  6. A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas’kov, “Dispersion of the refractive index of light and permittivity of gallium phosphide,” Sov. Phys. Semicond. 10, 1224–1226 (1976).
  7. D. E. Zelmon et al., Ref. 7 of [3].
  8. T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and Dispersion of Indium Antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
    [Crossref]
  9. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
    [Crossref]
  10. G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46(1), 89–98 (1975).
    [Crossref]
  11. K. Haruna, H. Maeta, K. Ohashi, and T. Koike, “The negative thermal expansion coefficient of GaP crystal at low temperatures,” J. Phys. Chem. 19, 5149 (1986).
  12. K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
    [Crossref]
  13. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

2011 (1)

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

1986 (1)

K. Haruna, H. Maeta, K. Ohashi, and T. Koike, “The negative thermal expansion coefficient of GaP crystal at low temperatures,” J. Phys. Chem. 19, 5149 (1986).

1976 (1)

A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas’kov, “Dispersion of the refractive index of light and permittivity of gallium phosphide,” Sov. Phys. Semicond. 10, 1224–1226 (1976).

1975 (1)

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46(1), 89–98 (1975).
[Crossref]

1971 (1)

1967 (1)

P. J. Dean, G. Kaminsky, and R. B. Zetterstrom, “Intrinsic Optical Absorption of Gallium Phosphide Between 2.33 and 3.12 eV,” J. Appl. Phys. 38(9), 3551–3556 (1967).
[Crossref]

1957 (1)

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and Dispersion of Indium Antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Bartram, S. F.

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46(1), 89–98 (1975).
[Crossref]

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Coleman, P. D.

Dean, P. J.

P. J. Dean, G. Kaminsky, and R. B. Zetterstrom, “Intrinsic Optical Absorption of Gallium Phosphide Between 2.33 and 3.12 eV,” J. Appl. Phys. 38(9), 3551–3556 (1967).
[Crossref]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Haruna, K.

K. Haruna, H. Maeta, K. Ohashi, and T. Koike, “The negative thermal expansion coefficient of GaP crystal at low temperatures,” J. Phys. Chem. 19, 5149 (1986).

Hawkins, T. D. F.

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and Dispersion of Indium Antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Kaminsky, G.

P. J. Dean, G. Kaminsky, and R. B. Zetterstrom, “Intrinsic Optical Absorption of Gallium Phosphide Between 2.33 and 3.12 eV,” J. Appl. Phys. 38(9), 3551–3556 (1967).
[Crossref]

Kato, K.

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

Koike, T.

K. Haruna, H. Maeta, K. Ohashi, and T. Koike, “The negative thermal expansion coefficient of GaP crystal at low temperatures,” J. Phys. Chem. 19, 5149 (1986).

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Maeta, H.

K. Haruna, H. Maeta, K. Ohashi, and T. Koike, “The negative thermal expansion coefficient of GaP crystal at low temperatures,” J. Phys. Chem. 19, 5149 (1986).

Moss, T. S.

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and Dispersion of Indium Antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Ohashi, K.

K. Haruna, H. Maeta, K. Ohashi, and T. Koike, “The negative thermal expansion coefficient of GaP crystal at low temperatures,” J. Phys. Chem. 19, 5149 (1986).

Parsons, D. F.

Petrov, V.

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

Pikhtin, A. N.

A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas’kov, “Dispersion of the refractive index of light and permittivity of gallium phosphide,” Sov. Phys. Semicond. 10, 1224–1226 (1976).

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Prokopenko, V. T.

A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas’kov, “Dispersion of the refractive index of light and permittivity of gallium phosphide,” Sov. Phys. Semicond. 10, 1224–1226 (1976).

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Slack, G. A.

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46(1), 89–98 (1975).
[Crossref]

Smith, S. D.

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and Dispersion of Indium Antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Umemura, N.

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Yas’kov, A. D.

A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas’kov, “Dispersion of the refractive index of light and permittivity of gallium phosphide,” Sov. Phys. Semicond. 10, 1224–1226 (1976).

Zetterstrom, R. B.

P. J. Dean, G. Kaminsky, and R. B. Zetterstrom, “Intrinsic Optical Absorption of Gallium Phosphide Between 2.33 and 3.12 eV,” J. Appl. Phys. 38(9), 3551–3556 (1967).
[Crossref]

Appl. Opt. (1)

J. Appl. Phys. (4)

P. J. Dean, G. Kaminsky, and R. B. Zetterstrom, “Intrinsic Optical Absorption of Gallium Phosphide Between 2.33 and 3.12 eV,” J. Appl. Phys. 38(9), 3551–3556 (1967).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys. 46(1), 89–98 (1975).
[Crossref]

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

J. Phys. Chem. (1)

K. Haruna, H. Maeta, K. Ohashi, and T. Koike, “The negative thermal expansion coefficient of GaP crystal at low temperatures,” J. Phys. Chem. 19, 5149 (1986).

Proc. Phys. Soc. B (1)

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and Dispersion of Indium Antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Sov. Phys. Semicond. (1)

A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas’kov, “Dispersion of the refractive index of light and permittivity of gallium phosphide,” Sov. Phys. Semicond. 10, 1224–1226 (1976).

Other (5)

D. E. Zelmon et al., Ref. 7 of [3].

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon., “1064-nm-Pumped Mid-Infrared Optical Parametric Oscillator Based on Orientation-Patterned Gallium Phosphide (OP-GaP),” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3O.4.

D. J. Creeden, P. Schunemann, L. Pomeranz, K. Snell, and S. D. Setzler, “Long-wave Infrared Parametric Generation and Amplification in Orientation Patterned GaP ” in Advanced Solid State Lasers, OSA Technical Digest (2016), paper ATu5A.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “First OPO Based on Orientation-Patterned Gallium Phosphide (OP-GaP)”, in CLEO:2015, OSA Technical Digest (Optical Society of America, 2015), paper SW3O.1.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Transmission spectrum of a GaP wafer at 295 K
Fig. 2
Fig. 2 Calculated sample thickness at 295 K, dividing n(λ)d product (from spectral data) by refractive index values from Eq. (1).
Fig. 3
Fig. 3 (a) Temperature and wavelength dependent refractive indices of GaP, in 50 K steps; n(λ,T) increases with temperature. (b, c, d) Fit errors between the Sellmeier expression and the experimental refractive index at different temperatures.
Fig. 4
Fig. 4 Comparison between predicted signal and idler wavelengths (solid line) and the experimentally measured values (symbols) for (a) 1.064 µm pump OPO, with Λ = 20.8 µm, (b) 1.559 µm pump OPO, with Λ = 61.1 µm, and (c) 2.09 µm pump OPO, with Λ = 92.7 µm.

Tables (2)

Tables Icon

Table 1 Experimental wavelengths and grating spacings, and predicted grating spacings

Tables Icon

Table 2 Temperature-dependent Sellmeier fit coefficientsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ )=1+ A 1 λ 2 λ 2 A 2 2 + B 1 λ 2 λ 2 B 2 2 + C 1 λ 2 λ 2 C 2 2  + D 1 λ 2 λ 2 D 2 2
2 n( λ )d=mλ
n 2 =A(T)+ B(T) λ 2 C + D(T) λ 2 E

Metrics