Abstract

The use of Tb3+ codoping for the enhancement of the transition of Tm3+:3H43F4 ∼1.4 μm emissions was investigated in the Tm3+/Tb3+ codoped (Gd0.5Lu0.5)2SiO5 (Tm/Tb:GLSO) crystal for the first time. The ∼1.4 μm fluorescence emission properties and energy transfer mechanism of the as-grown crystals were investigated in detail. It is found that the codoped of Tb3+ ion in Tm/Tb:GLSO crystal greatly enhances Tm3+:1.4 μm emission under excitation of a common 789 nm laser diode, depopulates the lower laser level of Tm3+:3F4, and has little effect on the upper laser level of Tm3+:3H4 at the same time. The energy transfer efficiency from the Tm3+:3F4 level to the Tb3+:7F0 level is as high as (74.4±1.5)%, indicating that the Tb3+ ion is an effective deactivation ion for enhancing the ∼1.4 μm emission in Tm/Tb:GLSO crystal. These results suggest that Tm/Tb:GLSO crystal may be a promising material for ∼1.4 μm laser under the pump of a conventional 789 nm LD.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced 573 nm yellow emissions of Dy3+ via Tb3+ deactivation in Na2Gd4(MoO4)7 crystal

Runsheng Huang, Peixiong Zhang, Xingbin Huang, Rui Wang, Siqi Zhu, Hao Yin, Zhen Li, and Zhenqiang Chen
Opt. Mater. Express 7(10) 3673-3679 (2017)

Enhanced 2.7 μm mid-infrared emissions of Er3+ via Pr3+ deactivation and Yb3+ sensitization in LiNbO3 crystal

Peixiong Zhang, Zhenqiang Chen, Yin Hang, Zhen Li, Hao Yin, Siqi Zhu, Shenhe Fu, and Anming Li
Opt. Express 24(22) 25202-25210 (2016)

Spectroscopy and energy transfer mechanism of Tb3+ strengthened Er3+ 2.7μm emission in PbF2 crystal

Yuhao Wang, Peixiong Zhang, Xiao Li, Yin Hang, Shanming Li, Siqi Zhu, Hao Yin, Zhen Li, Zhenqiang Chen, Shibo Dai, and Yi Zheng
Opt. Mater. Express 9(1) 13-25 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
    [Crossref] [PubMed]
  2. D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
    [Crossref]
  3. Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
    [Crossref]
  4. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
    [Crossref]
  5. P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
    [Crossref]
  6. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
    [Crossref]
  7. Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
    [Crossref]
  8. R. M. Percival, D. Szebesta, and J. R. Williams, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett. 30, 1057(1994).
    [Crossref]
  9. S. D. Emami, A. Zarifi, H. A. A. Rashid, A. R. Muhammad, M. C. Paul, A. Halder, S. K. Bhadra, H. Ahmad, and S. W. Harun, “Gain-shift induced by dopant concentration ratio in a thulium-bismuth doped fiber amplifier,” Opt. Express 22(6), 7075–7086 (2014).
    [Crossref] [PubMed]
  10. X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
    [Crossref]
  11. K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals,” IEEE T. Nucl. Sci. 56(5),2960–2965 (2009).
    [Crossref]
  12. A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
    [Crossref]
  13. J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
    [Crossref]
  14. J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
    [Crossref] [PubMed]
  15. W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
    [Crossref] [PubMed]
  16. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  17. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  18. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424 (1968).
    [Crossref]
  19. C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
    [Crossref]
  20. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
    [Crossref]

2017 (3)

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

2016 (2)

X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

2014 (4)

A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
[Crossref]

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

S. D. Emami, A. Zarifi, H. A. A. Rashid, A. R. Muhammad, M. C. Paul, A. Halder, S. K. Bhadra, H. Ahmad, and S. W. Harun, “Gain-shift induced by dopant concentration ratio in a thulium-bismuth doped fiber amplifier,” Opt. Express 22(6), 7075–7086 (2014).
[Crossref] [PubMed]

2009 (2)

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals,” IEEE T. Nucl. Sci. 56(5),2960–2965 (2009).
[Crossref]

2006 (1)

J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
[Crossref] [PubMed]

2004 (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[Crossref]

1994 (1)

R. M. Percival, D. Szebesta, and J. R. Williams, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett. 30, 1057(1994).
[Crossref]

1989 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]

1983 (1)

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424 (1968).
[Crossref]

1962 (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Ahmad, H.

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

Berkowski, M.

A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
[Crossref]

Bhadra, S. K.

Blanc, W.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[Crossref]

Cai, Z.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424 (1968).
[Crossref]

Chen, Z.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Cui, Q.

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Di, J.

X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
[Crossref]

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

Du, J.

J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
[Crossref] [PubMed]

Dussardier, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[Crossref]

Emami, S. D.

Eriksson, L. A.

K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals,” IEEE T. Nucl. Sci. 56(5),2960–2965 (2009).
[Crossref]

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424 (1968).
[Crossref]

Fu, S.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Guan, X.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Guo, H.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Halder, A.

Han, H.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Hang, Y.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Hao, Z.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Harun, S. W.

Hou, C.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Huang, X.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

Jia, Y.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Jorgensen, C. K.

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[Crossref]

Lan, J.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Lei, M.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Li, A.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Li, R.

J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
[Crossref] [PubMed]

Li, W.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Li, Z.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Liang, X.

J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
[Crossref] [PubMed]

Lin, Z.

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Lisiecki, R.

A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
[Crossref]

Liu, L.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Liu, P.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Lu, M.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Luo, Y.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Melcher, C. L.

K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals,” IEEE T. Nucl. Sci. 56(5),2960–2965 (2009).
[Crossref]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]

Muhammad, A. R.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Pan, G.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Paul, M. C.

Peng, B.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Peng, Y.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Percival, R. M.

R. M. Percival, D. Szebesta, and J. R. Williams, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett. 30, 1057(1994).
[Crossref]

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[Crossref]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]

Rack, P. D.

K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals,” IEEE T. Nucl. Sci. 56(5),2960–2965 (2009).
[Crossref]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424 (1968).
[Crossref]

Rashid, H. A. A.

Reisfeld, R.

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

Ryba-Romanowski, W.

A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
[Crossref]

Sai, Q.

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

Solarz, P.

A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
[Crossref]

Strze, A.

A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
[Crossref]

Szebesta, D.

R. M. Percival, D. Szebesta, and J. R. Williams, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett. 30, 1057(1994).
[Crossref]

Tang, D.

X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
[Crossref]

Tian, W.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Wang, Y.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Wang, Z.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Wei, L.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Wei, Z.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Williams, J. R.

R. M. Percival, D. Szebesta, and J. R. Williams, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett. 30, 1057(1994).
[Crossref]

Wu, D.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Xia, C.

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

Xiao, W.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Xu, B.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Xu, H.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Xu, J.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Xu, X.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

Xu, Y.

J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
[Crossref] [PubMed]

Xu, Z.

J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
[Crossref] [PubMed]

Yan, D.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Yang, K.

K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals,” IEEE T. Nucl. Sci. 56(5),2960–2965 (2009).
[Crossref]

Yin, H.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Zarifi, A.

Zhang, J.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
[Crossref]

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Zhang, L.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Zhang, P.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Zhang, X.

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

Zheng, L.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Zhou, D.

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

Zhou, Z.

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Zhu, J.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Zhu, S.

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

Zhu, Z.

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Zou, K.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Electron. Lett. (2)

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]

R. M. Percival, D. Szebesta, and J. R. Williams, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett. 30, 1057(1994).
[Crossref]

IEEE J. Quantum Elect. (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Elect. 18(5), 925–930 (1982).
[Crossref]

IEEE T. Nucl. Sci. (1)

K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals,” IEEE T. Nucl. Sci. 56(5),2960–2965 (2009).
[Crossref]

J. Alloys Compd. (2)

D. Wu, W. Xiao, X. Zhang, Z. Hao, G. Pan, L. Zhang, Y. Luo, and J. Zhang, “Enhanced emission of Tm3+:3F4→3H6 transition by backward energy transfer from Yb3+ in Y2O3 for mid-infrared applications,” J. Alloys Compd.,  722, 48–53 (2017).
[Crossref]

P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, and A. Li, “Enhanced emission of the 1.50–1.67 μm fluorescence in Er3+, Ce3+ codoped Lu3Al5O12 crystal,” J. Alloys Compd. 696, 795–798 (2017).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424 (1968).
[Crossref]

J. Less-Common Met. (1)

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

Mater. Res. Bull. (1)

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378(2014).
[Crossref]

Opt. Commun. (1)

X. Xu, J. Di, J. Zhang, D. Tang, and J. Xu, “Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium,” Opt. Commun. 366, 77–80(2016).
[Crossref]

Opt. Express (1)

Opt. Express. (3)

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+ doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

J. Du, X. Liang, Y. Xu, R. Li, and Z. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express. 14(8), 3333–3338 (2006).
[Crossref] [PubMed]

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61 fs pulse duration,” Opt. Express. 22(16), 19040 (2014).
[Crossref] [PubMed]

Opt. Mater. (1)

A. Strze, R. Lisiecki, P. Solarz, W. Ryba-Romanowski, and M. Berkowski, “Spectroscopic characterization of Sm3+ doped (Lu0.4Gd0.6)2SiO5 single crystals,” Opt. Mater. 36, 740–745(2014).
[Crossref]

Opt. Mater. Express (2)

Z. Lin, J. Lan, Q. Cui, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2→4I13/2 transition around 1.3 and 1.4 μm, Opt. Mater. Express 5(3), 3386–3393 (2016).
[Crossref]

Z. Zhou, X. Huang, X. Guan, J. Lan, B. Xu, H. Xu, Z. Cai, P. Liu, D. Yan, X. Xu, J. Zhang, M. Lei, and J. Xu, Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers, Opt. Mater. Express 5(3), 3441–3447 (2017).
[Crossref]

Opt. Quantum Electron. (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Simplified energy level diagram of Tm3+ and Tb3+ co-doped system. ET: energy transfer from Tm3+:3F4 level to Tb3+:7F0 level.
Fig. 2
Fig. 2 Absorption spectra of Tm:GLSO, Tb:GLSO, and Tm/Tb:GLSO crystals in the range of 600–2500 nm.
Fig. 3
Fig. 3 Emission spectra of Tm:GLSO and Tm/Tb:GLSO crystals.
Fig. 4
Fig. 4 Fluorescence decay curves of Tm:GLSO and Tm/Tb:GLSO crystals for the 3H4 and 3F4 mainfold.

Tables (3)

Tables Icon

Table 1 Barycenter wavelengths, and measured and calculated line strengths of Tm/Tb:GLSO crystal.

Tables Icon

Table 2 Judd–Ofelt parameters, calculated branching ratio, and lifetime of Tm:GLSO and Tm/Tb:GLSO crystals.

Tables Icon

Table 3 Line strengths, branching ratios, and transition probabilities in Tm/Tb:GLSO crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S mea ( J J ) = 3 h c ( 2 J + 1 ) 8 π 3 e 2 N 0 9 n ( n 2 + 2 ) 2 ln 10 λ ¯ L × J J O D ( λ ) d λ ,
S cal ( J J ) = t = 2 , 4 , 6 Ω t | S , L , J U ( t ) S , L , J | 2 ,

Metrics