Abstract

We demonstrate a normally transparent smart window based on a cholesteric liquid crystal with negative dielectric anisotropy. The window is electrically switchable between clear and diffuse states. The clear state exhibits a well-aligned planar cholesteric texture and is stable in the absence of an electric field, while the diffuse state is switched on when applying a field higher than the undulation instability threshold. The degree of translucency can be controlled by varying the field strength. When the applied field is removed, the smart window relaxes back to the clear state spontaneously. It is also found that a much faster diffuse–clear process can be stimulated by reducing the field below the instability threshold. The smart window presents itself a promising projector screen for augmented reality applications as it features single stable state, sub-second switching speed, and polymerization-free fabrication.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich
Opt. Lett. 30(4) 349-351 (2005)

Bistable cholesteric liquid crystal light shutter with multielectrode driving

Cheng-Chang Li, Heng-Yi Tseng, Tsung-Wei Pai, Yu-Ching Wu, Wen-Hao Hsu, Hung-Chang Jau, Chun-Wei Chen, and Tsung-Hsien Lin
Appl. Opt. 53(22) E33-E37 (2014)

Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid

Hongbo Lu, Wei Xu, Zhigang Song, Shanna Zhang, Longzhen Qiu, Xianghua Wang, Guobing Zhang, Juntao Hu, and Guoqiang Lv
Opt. Lett. 39(24) 6795-6798 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced Medical Displays: A Literature Review of Augmented Reality,” J. Disp. Technol. 4(4), 451–467 (2008).
    [Crossref]
  2. M. Tönnis, C. Lange, and G. Klinker, “Visual Longitudinal and Lateral Driving Assistance in the Head-Up Display of Cars,” in Proceedings of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (IEEE, 2007), pp. 91–94.
    [Crossref]
  3. H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up augmented reality interfaces for crash warning systems,” in Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (ACM, 2013), pp. 224–227.
    [Crossref]
  4. C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
    [Crossref]
  5. Y.-H. Fan, H. Ren, and S.-T. Wu, “Normal-mode anisotropic liquid-crystal gels,” Appl. Phys. Lett. 82(18), 2945–2947 (2003).
    [Crossref]
  6. J. Murray, D. Ma, and J. N. Munday, “Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows,” ACS Photonics 4(1), 1–7 (2017).
    [Crossref]
  7. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  8. C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
    [Crossref] [PubMed]
  9. C.-C. Li, H.-Y. Tseng, H.-C. Liao, H.-M. Chen, T. Hsieh, S.-A. Lin, H.-C. Jau, Y.-C. Wu, Y.-L. Hsu, W.-H. Hsu, and T.-H. Lin, “Enhanced image quality of OLED transparent display by cholesteric liquid crystal back-panel,” Opt. Express 25(23), 29199–29206 (2017).
    [Crossref]
  10. K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
    [Crossref] [PubMed]
  11. A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
    [Crossref]
  12. S. V. Serak, U. Hrozhyk, J. Hwang, N. V. Tabiryan, D. Steeves, and B. R. Kimball, “High contrast switching of transmission due to electrohydrodynamic effect in stacked thin systems of liquid crystals,” Appl. Opt. 55(30), 8506–8512 (2016).
    [Crossref] [PubMed]
  13. Y. Suzuki, N. Mizoshita, K. Hanabusa, and T. Kato, “Homeotropically oriented nematic physical gels for electrooptical materials,” J. Mater. Chem. 13(12), 2870–2874 (2003).
    [Crossref]
  14. Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
    [Crossref]
  15. Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
    [Crossref]
  16. F. Ahmad, M. Jamil, and Y. J. Jeon, “Current Trends in Studies on Reverse-Mode Polymer Dispersed Liquid-Crystal Films – A Review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
    [Crossref]
  17. H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
    [Crossref]
  18. G. Palermo, L. De Sio, and C. Umeton, “Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 619(1), 35–41 (2015).
    [Crossref]
  19. H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared Regulating Smart Window Based on Organic Materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
    [Crossref]
  20. I. C. Khoo, C.-W. Chen, T.-J. Ho, and T.-H. Lin, “Femtoseconds-picoseconds nonlinear optics with nearly-mm thick cholesteric liquid crystals,” in Proc. SPIE 10125, Emerging Liquid Crystal Technologies XII, L.-C. Chien, ed. (2017), 1012507.
  21. C.-W. Chen, X. Guo, X. Ni, T.-H. Lin, and I. C. Khoo, “Slowing sub-picosecond laser pulses with 0.55 mm-thick cholesteric liquid crystal,” Opt. Mater. Express 7(6), 2005–2011 (2017).
    [Crossref]
  22. B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1 Pt 1), 011712 (2006).
    [Crossref] [PubMed]

2017 (4)

2016 (3)

S. V. Serak, U. Hrozhyk, J. Hwang, N. V. Tabiryan, D. Steeves, and B. R. Kimball, “High contrast switching of transmission due to electrohydrodynamic effect in stacked thin systems of liquid crystals,” Appl. Opt. 55(30), 8506–8512 (2016).
[Crossref] [PubMed]

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

2015 (1)

G. Palermo, L. De Sio, and C. Umeton, “Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 619(1), 35–41 (2015).
[Crossref]

2014 (3)

C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref] [PubMed]

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current Trends in Studies on Reverse-Mode Polymer Dispersed Liquid-Crystal Films – A Review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
[Crossref]

2011 (1)

2008 (1)

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced Medical Displays: A Literature Review of Augmented Reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

2006 (2)

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1 Pt 1), 011712 (2006).
[Crossref] [PubMed]

2004 (1)

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

2003 (3)

Y. Suzuki, N. Mizoshita, K. Hanabusa, and T. Kato, “Homeotropically oriented nematic physical gels for electrooptical materials,” J. Mater. Chem. 13(12), 2870–2874 (2003).
[Crossref]

C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
[Crossref]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Normal-mode anisotropic liquid-crystal gels,” Appl. Phys. Lett. 82(18), 2945–2947 (2003).
[Crossref]

Ahmad, F.

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current Trends in Studies on Reverse-Mode Polymer Dispersed Liquid-Crystal Films – A Review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

Chen, C.-W.

Chen, H.-M.

Cheng, K.-T.

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

Cheng, W.-F.

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

De Sio, L.

G. Palermo, L. De Sio, and C. Umeton, “Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 619(1), 35–41 (2015).
[Crossref]

Debije, M. G.

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared Regulating Smart Window Based on Organic Materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
[Crossref]

Fan, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Normal-mode anisotropic liquid-crystal gels,” Appl. Phys. Lett. 82(18), 2945–2947 (2003).
[Crossref]

Feuerstein, M.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced Medical Displays: A Literature Review of Augmented Reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Gabbard, J. L.

H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up augmented reality interfaces for crash warning systems,” in Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (ACM, 2013), pp. 224–227.
[Crossref]

Gauza, S.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

Guo, X.

Hanabusa, K.

Y. Suzuki, N. Mizoshita, K. Hanabusa, and T. Kato, “Homeotropically oriented nematic physical gels for electrooptical materials,” J. Mater. Chem. 13(12), 2870–2874 (2003).
[Crossref]

Hensen, J. L. M.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
[Crossref]

Hrozhyk, U.

Hsiao, Y.-C.

Hsieh, T.

Hsu, W.-H.

Hsu, Y.-L.

Hwang, J.

Jamil, M.

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current Trends in Studies on Reverse-Mode Polymer Dispersed Liquid-Crystal Films – A Review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

Jau, H.-C.

Jeon, Y. J.

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current Trends in Studies on Reverse-Mode Polymer Dispersed Liquid-Crystal Films – A Review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

Kato, T.

Y. Suzuki, N. Mizoshita, K. Hanabusa, and T. Kato, “Homeotropically oriented nematic physical gels for electrooptical materials,” J. Mater. Chem. 13(12), 2870–2874 (2003).
[Crossref]

Khandelwal, H.

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared Regulating Smart Window Based on Organic Materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
[Crossref]

Khoo, I. C.

Kim, H.

H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up augmented reality interfaces for crash warning systems,” in Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (ACM, 2013), pp. 224–227.
[Crossref]

Kimball, B. R.

Klinker, G.

M. Tönnis, C. Lange, and G. Klinker, “Visual Longitudinal and Lateral Driving Assistance in the Head-Up Display of Cars,” in Proceedings of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (IEEE, 2007), pp. 91–94.
[Crossref]

Lampert, C. M.

C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
[Crossref]

Lange, C.

M. Tönnis, C. Lange, and G. Klinker, “Visual Longitudinal and Lateral Driving Assistance in the Head-Up Display of Cars,” in Proceedings of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (IEEE, 2007), pp. 91–94.
[Crossref]

Lavrentovich, O. D.

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1 Pt 1), 011712 (2006).
[Crossref] [PubMed]

Lee, P.-Y.

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

Lee, W.

Li, C.-C.

Li, Q.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Li, Y.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Liang, X.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Liao, H.-C.

Lin, S.-A.

Lin, T.-H.

Lin, Y.-H.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Liu, C.-K.

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

Loonen, R. C. G. M.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
[Crossref]

Ma, D.

J. Murray, D. Ma, and J. N. Munday, “Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Mizoshita, N.

Y. Suzuki, N. Mizoshita, K. Hanabusa, and T. Kato, “Homeotropically oriented nematic physical gels for electrooptical materials,” J. Mater. Chem. 13(12), 2870–2874 (2003).
[Crossref]

Moheghi, A.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Munday, J. N.

J. Murray, D. Ma, and J. N. Munday, “Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Murray, J.

J. Murray, D. Ma, and J. N. Munday, “Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Navab, N.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced Medical Displays: A Literature Review of Augmented Reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Nemati, H.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Ni, X.

Pai, T.-W.

Palermo, G.

G. Palermo, L. De Sio, and C. Umeton, “Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 619(1), 35–41 (2015).
[Crossref]

Polys, N. F.

H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up augmented reality interfaces for crash warning systems,” in Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (ACM, 2013), pp. 224–227.
[Crossref]

Qasim, M. M.

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

Ren, H.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Normal-mode anisotropic liquid-crystal gels,” Appl. Phys. Lett. 82(18), 2945–2947 (2003).
[Crossref]

Schenning, A. P. H. J.

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared Regulating Smart Window Based on Organic Materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
[Crossref]

Senyuk, B. I.

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1 Pt 1), 011712 (2006).
[Crossref] [PubMed]

Serak, S. V.

Sielhorst, T.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced Medical Displays: A Literature Review of Augmented Reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Smalyukh, I. I.

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1 Pt 1), 011712 (2006).
[Crossref] [PubMed]

Steeves, D.

Suzuki, Y.

Y. Suzuki, N. Mizoshita, K. Hanabusa, and T. Kato, “Homeotropically oriented nematic physical gels for electrooptical materials,” J. Mater. Chem. 13(12), 2870–2874 (2003).
[Crossref]

Tabiryan, N. V.

Tang, C.-Y.

Tönnis, M.

M. Tönnis, C. Lange, and G. Klinker, “Visual Longitudinal and Lateral Driving Assistance in the Head-Up Display of Cars,” in Proceedings of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (IEEE, 2007), pp. 91–94.
[Crossref]

Tseng, H.-Y.

Umeton, C.

G. Palermo, L. De Sio, and C. Umeton, “Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 619(1), 35–41 (2015).
[Crossref]

Wilkinson, T. D.

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

Wu, S.-T.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Normal-mode anisotropic liquid-crystal gels,” Appl. Phys. Lett. 82(18), 2945–2947 (2003).
[Crossref]

Wu, X.

H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up augmented reality interfaces for crash warning systems,” in Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (ACM, 2013), pp. 224–227.
[Crossref]

Wu, Y.-C.

Wu, Y.-H.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

Yang, D.-K.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Zhou, Y.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8(16), 10483–10493 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

J. Murray, D. Ma, and J. N. Munday, “Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Adv. Energy Mater. (1)

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared Regulating Smart Window Based on Organic Materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Normal-mode anisotropic liquid-crystal gels,” Appl. Phys. Lett. 82(18), 2945–2947 (2003).
[Crossref]

Electron. Mater. Lett. (1)

F. Ahmad, M. Jamil, and Y. J. Jeon, “Current Trends in Studies on Reverse-Mode Polymer Dispersed Liquid-Crystal Films – A Review,” Electron. Mater. Lett. 10(4), 679–692 (2014).
[Crossref]

J. Disp. Technol. (1)

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced Medical Displays: A Literature Review of Augmented Reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

J. Mater. Chem. (1)

Y. Suzuki, N. Mizoshita, K. Hanabusa, and T. Kato, “Homeotropically oriented nematic physical gels for electrooptical materials,” J. Mater. Chem. 13(12), 2870–2874 (2003).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

G. Palermo, L. De Sio, and C. Umeton, “Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 619(1), 35–41 (2015).
[Crossref]

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, Y. Zhou, and S.-T. Wu, “High Contrast and Fast Response Polarization-Independent Reflective Display Using a Dye-Doped Dual-Frequency Liquid Crystal Gel,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 371–378 (2006).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1 Pt 1), 011712 (2006).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
[Crossref]

Other (3)

M. Tönnis, C. Lange, and G. Klinker, “Visual Longitudinal and Lateral Driving Assistance in the Head-Up Display of Cars,” in Proceedings of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (IEEE, 2007), pp. 91–94.
[Crossref]

H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up augmented reality interfaces for crash warning systems,” in Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (ACM, 2013), pp. 224–227.
[Crossref]

I. C. Khoo, C.-W. Chen, T.-J. Ho, and T.-H. Lin, “Femtoseconds-picoseconds nonlinear optics with nearly-mm thick cholesteric liquid crystals,” in Proc. SPIE 10125, Emerging Liquid Crystal Technologies XII, L.-C. Chien, ed. (2017), 1012507.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic and photographs of the proposed CLC smart window (d ≈45 μm).
Fig. 2
Fig. 2 (a) Specular transmission spectra at different field strengths (d ≈32 μm and f = 1 kHz). (b) Dependence of instability threshold on driving frequency.
Fig. 3
Fig. 3 (a) Microscope images, (b) far-field diffraction patterns, and (c) undulation periods of CLC at different field strengths above the threshold field Ec ≈2.8 V (d ≈32 μm and f = 1 kHz).
Fig. 4
Fig. 4 (a) Time-resolved specular transmittance revealing the clear–diffuse switching and self-restoration processes (EH ≈3.8 V/μm, f = 1 kHz, and d ≈32 μm). (b) Response time for the clear–diffuse (fall time, circles) and diffuse–clear (rise time, squares) at different field strengths (EH) and thicknesses (filled symbols: 32 μm, open symbols: 45 μm).
Fig. 5
Fig. 5 Time-resolved specular transmittance diagram showing the field-induced clear–diffuse transition, spontaneous restoration, and field-induced restoration process (EH ≈4.5 V/μm, EL ≈2.7 V/μm, d ≈45 μm, and f ≈1 kHz).

Metrics