Abstract

A novel graphene-based metamaterial absorber with actively tunable bandwidth, intensity and frequency, working at the terahertz (THz) spectral region, was designed and numerically investigated in this paper. The actively controlled absorption characteristics in the graphene absorber were achieved by integrating two identical-sized graphene disc elements to construct a supercell, in which two elements of all unit cells were connected respectively by the electrical isolation graphene wires to form selectively electrostatic doping. The surface current distributions and the circuit model analysis were conducted to reveal the absorption mechanism and predict the tuning mechanism. Moreover, by selectively tuning two gate voltages to change the Fermi energy reconfiguration state of two graphene elements, the absorption bandwidth, intensity and frequency of the metamaterial absorber could be actively controlled. In addition, a striking switching contrast was obtained by switching the reconfiguration state of the two discs. Therefore, this work paves a pathway for the realization of actively controlled terahertz waves based on electrically reconfigured graphene metamaterials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 22(19) 22743-22752 (2014)

Dual broadband absorber based on graphene metamaterial in the terahertz range

Ning Hu, Fengling Wu, Li-an Bian, Hanqing Liu, and Peiguo Liu
Opt. Mater. Express 8(12) 3899-3909 (2018)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  3. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  4. C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
    [Crossref]
  5. K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
    [Crossref] [PubMed]
  6. R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
    [Crossref]
  7. B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
    [Crossref]
  8. N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).
  9. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  10. S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
    [Crossref]
  11. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  12. S. Lee and S. Kim, “Optical absorption characteristic in thin a-Si film embedded between an ultrathin metal grating and a metal reflector,” IEEE Photonics J. 5(5), 4800610 (2013).
    [Crossref]
  13. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  14. H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  15. R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
    [Crossref]
  16. Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
    [Crossref]
  17. Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
    [Crossref] [PubMed]
  18. K. Ling, M. Yoo, W. Su, K. Kim, B. Cook, M. M. Tentzeris, and S. Lim, “Microfluidic tunable inkjet-printed metamaterial absorber on paper,” Opt. Express 23(1), 110–120 (2015).
    [Crossref] [PubMed]
  19. K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
    [Crossref] [PubMed]
  20. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  21. G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
    [Crossref]
  22. X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16–A21 (2016).
    [Crossref]
  23. B. X. Wang and G. Z. Wang, “Temperature tunable metamaterial absorber at THz frequencies,” J. Mater. Sci. Mater. Electron. 28(12), 8487–8493 (2017).
    [Crossref]
  24. P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
    [Crossref]
  25. M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
    [Crossref]
  26. H. K. Kim, D. Lee, and S. Lim, “Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator,” Appl. Opt. 55(15), 4113–4118 (2016).
    [Crossref] [PubMed]
  27. B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express 18(22), 23196–23203 (2010).
    [Crossref] [PubMed]
  28. H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in X-band,” J. Appl. Phys. 117(17), 173103 (2015).
    [Crossref]
  29. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  30. X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
    [Crossref] [PubMed]
  31. Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
    [Crossref] [PubMed]
  32. A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  33. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  34. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
    [Crossref] [PubMed]
  35. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  36. P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
    [Crossref] [PubMed]
  37. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  38. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
    [Crossref] [PubMed]
  39. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  40. S. Suzuki, M. Takamura, and H. Yamamoto, “Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region,” Jpn. J. Appl. Phys. 55(6S1), 06GF08 (2016).
    [Crossref]
  41. B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
    [Crossref]
  42. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
    [Crossref] [PubMed]
  43. X. Y. He, X. Zhong, F. T. Lin, and W. Z. Shi, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331–342 (2016).
    [Crossref]
  44. X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
    [Crossref]
  45. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
    [Crossref] [PubMed]
  46. A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941–1946 (2015).
    [Crossref]
  47. K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 1–6 (2017).
    [Crossref]
  48. S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical circuit model for periodic arrays of graphene disks,” IEEE J. Quantum Electron. 51(9), 7000507 (2015).
    [Crossref]
  49. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
    [Crossref]
  50. D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).
  51. K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
    [Crossref]
  52. G. R. Keiser, J. D. Zhang, X. G. Zhao, X. Zhang, and R. D. Averitt, “Terahertz saturable absorption in superconducting metamaterials,” J. Opt. Soc. Am. B 33(12), 2649 (2016).
    [Crossref]
  53. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
    [Crossref] [PubMed]
  54. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  55. P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
    [Crossref]
  56. P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
    [Crossref]
  57. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref] [PubMed]

2017 (5)

B. X. Wang and G. Z. Wang, “Temperature tunable metamaterial absorber at THz frequencies,” J. Mater. Sci. Mater. Electron. 28(12), 8487–8493 (2017).
[Crossref]

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 1–6 (2017).
[Crossref]

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

2016 (11)

G. R. Keiser, J. D. Zhang, X. G. Zhao, X. Zhang, and R. D. Averitt, “Terahertz saturable absorption in superconducting metamaterials,” J. Opt. Soc. Am. B 33(12), 2649 (2016).
[Crossref]

X. Y. He, X. Zhong, F. T. Lin, and W. Z. Shi, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331–342 (2016).
[Crossref]

D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

S. Suzuki, M. Takamura, and H. Yamamoto, “Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region,” Jpn. J. Appl. Phys. 55(6S1), 06GF08 (2016).
[Crossref]

H. K. Kim, D. Lee, and S. Lim, “Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator,” Appl. Opt. 55(15), 4113–4118 (2016).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16–A21 (2016).
[Crossref]

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

2015 (15)

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in X-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

K. Ling, M. Yoo, W. Su, K. Kim, B. Cook, M. M. Tentzeris, and S. Lim, “Microfluidic tunable inkjet-printed metamaterial absorber on paper,” Opt. Express 23(1), 110–120 (2015).
[Crossref] [PubMed]

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical circuit model for periodic arrays of graphene disks,” IEEE J. Quantum Electron. 51(9), 7000507 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941–1946 (2015).
[Crossref]

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

2014 (5)

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

2013 (6)

S. Lee and S. Kim, “Optical absorption characteristic in thin a-Si film embedded between an ultrathin metal grating and a metal reflector,” IEEE Photonics J. 5(5), 4800610 (2013).
[Crossref]

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

2012 (3)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

2011 (2)

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
[Crossref]

B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express 18(22), 23196–23203 (2010).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

2009 (1)

H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (3)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

AbdollahRamezani, S.

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 1–6 (2017).
[Crossref]

Ahn, J.

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

Arigong, B.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Arik, K.

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 1–6 (2017).
[Crossref]

Averitt, R. D.

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Barzegar-Parizi, S.

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical circuit model for periodic arrays of graphene disks,” IEEE J. Quantum Electron. 51(9), 7000507 (2015).
[Crossref]

Beccherelli, R.

G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Beck, M.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Bian, B. R.

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

Bingham, C. M.

Chai, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chen, W.

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. J.

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, J. W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Clich, M. J.

H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Cole, M.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Cong, L. Q.

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Cook, B.

Dayal, G.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Dhakar, L.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

Ding, C. F.

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Ding, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Dong, X. C.

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

Duan, G.

Dung, N. V.

D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).

Engheta, N.

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Faist, J.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fan, K.

Fan, S. T.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Faraone, L.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Feng, Y.

Fisher, T. S.

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

Fu, W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Gajic, R.

G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Gao, R. M.

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Giang, T. T.

D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gong, C.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Gordon, O.

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

Gu, C. Q.

Hai, P.

D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).

Hao, J. M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

He, S. L.

He, X.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

He, X. J.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

He, X. Y.

Ho, C. P.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, H.

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Hu, S.

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

Huang, C.

Huang, Y.

Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

Isic, G.

G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Jakovljevic, M. M.

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Ji, J.

Jiang, J. X.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Jiang, L. K.

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Jiang, T.

Jiang, W.

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Jin, Y.

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kala, H.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Keiser, G. R.

Khavasi, A.

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 1–6 (2017).
[Crossref]

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical circuit model for periodic arrays of graphene disks,” IEEE J. Quantum Electron. 51(9), 7000507 (2015).
[Crossref]

A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941–1946 (2015).
[Crossref]

Kim, H. K.

H. K. Kim, D. Lee, and S. Lim, “Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator,” Appl. Opt. 55(15), 4113–4118 (2016).
[Crossref] [PubMed]

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

Kim, K.

K. Ling, M. Yoo, W. Su, K. Kim, B. Cook, M. M. Tentzeris, and S. Lim, “Microfluidic tunable inkjet-printed metamaterial absorber on paper,” Opt. Express 23(1), 110–120 (2015).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kim, S.

S. Lee and S. Kim, “Optical absorption characteristic in thin a-Si film embedded between an ultrathin metal grating and a metal reflector,” IEEE Photonics J. 5(5), 4800610 (2013).
[Crossref]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kong, X. K.

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Kropelnicki, P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Kwong, D.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Kwong, D. L.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Lam, V. D.

D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).

Landy, N. I.

Lee, C.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Lee, C. K.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Lee, D.

Lee, K.

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

Lee, S.

S. Lee and S. Kim, “Optical absorption characteristic in thin a-Si film embedded between an ultrathin metal grating and a metal reflector,” IEEE Photonics J. 5(5), 4800610 (2013).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Li, H.

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Li, J.

Li, J. L.

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

Li, Z.

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lim, S.

Lin, D.

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

Lin, F. T.

Lin, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Ling, F.

Ling, K.

K. Ling, M. Yoo, W. Su, K. Kim, B. Cook, M. M. Tentzeris, and S. Lim, “Microfluidic tunable inkjet-printed metamaterial absorber on paper,” Opt. Express 23(1), 110–120 (2015).
[Crossref] [PubMed]

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

Liu, H.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Liu, M. K.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Liu, P. Q.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Liu, S. B.

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

Liu, W.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, X. L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Lu, G. J.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Lu, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Luo, C.

Luu, D. H.

D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).

Luxmoore, I. J.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Ma, B.

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

Ma, Y. G.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Maissen, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Manjappa, M.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

Mao, Z. W.

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martyniuk, M.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Metcalfe, G. D.

Mikhailov, S. A.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Min, B.

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Naorem, R.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Nash, G. R.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Niu, Z. Y.

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Padilla, W. J.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Park, H. G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Park, H. S.

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

Pitchappa, P.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Plum, E.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Powell, D. A.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Premaratne, M.

Putrino, G.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Qian, Y.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

Qiu, M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Rajeswaran, B.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Ramakrishna, S. A.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Rejaei, B.

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical circuit model for periodic arrays of graphene disks,” IEEE J. Quantum Electron. 51(9), 7000507 (2015).
[Crossref]

Ren, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Savostianova, N. A.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Scalari, G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Schönenberger, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shadrivov, I. V.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Shao, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, W.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Shi, W. Z.

Shih, K.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Si, L. M.

Silva, D.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Singh, N.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Singh, R.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Son, J.

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Su, W.

Sun, H.

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

Susli, M.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Suzuki, S.

S. Suzuki, M. Takamura, and H. Yamamoto, “Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region,” Jpn. J. Appl. Phys. 55(6S1), 06GF08 (2016).
[Crossref]

Takamura, M.

S. Suzuki, M. Takamura, and H. Yamamoto, “Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region,” Jpn. J. Appl. Phys. 55(6S1), 06GF08 (2016).
[Crossref]

Tan, S. Y.

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Tao, H.

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Tentzeris, M. M.

Tong, J. M.

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

Umarji, A. M.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Valmorra, F.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Vasic, B.

G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Wallace, V. P.

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Wang, B. X.

B. X. Wang and G. Z. Wang, “Temperature tunable metamaterial absorber at THz frequencies,” J. Mater. Sci. Mater. Electron. 28(12), 8487–8493 (2017).
[Crossref]

Wang, B. Y.

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, G. Z.

B. X. Wang and G. Z. Wang, “Temperature tunable metamaterial absorber at THz frequencies,” J. Mater. Sci. Mater. Electron. 28(12), 8487–8493 (2017).
[Crossref]

Wang, J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, N.

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

Wang, Z.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express 18(22), 23196–23203 (2010).
[Crossref] [PubMed]

Wen, G.

Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

Wraback, M.

Wu, F. M.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Wu, L.

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Xie, L. J.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Xiong, G.

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

Xu, B. Z.

Xu, D. G.

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Xu, W. D.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Xu, X.

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Yahiaoui, R.

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Yamamoto, H.

S. Suzuki, M. Takamura, and H. Yamamoto, “Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region,” Jpn. J. Appl. Phys. 55(6S1), 06GF08 (2016).
[Crossref]

Yan, F. P.

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Yang, B.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

Yang, J.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Yang, W. L.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yang, X. Y.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yang, Y.

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

Yao, G.

Yao, J.

Yao, J. Q.

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Ye, Y. Q.

Yin, G.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yin, S.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Ying, Y. B.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yoo, M.

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

K. Ling, M. Yoo, W. Su, K. Kim, B. Cook, M. M. Tentzeris, and S. Lim, “Microfluidic tunable inkjet-printed metamaterial absorber on paper,” Opt. Express 23(1), 110–120 (2015).
[Crossref] [PubMed]

Yu, Y.

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

Yu, Z. G.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yuan, H.

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in X-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

Yuan, J.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yue, J.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhan, M.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhang, G. Z.

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Zhang, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Zhang, H. F.

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

Zhang, J.

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16–A21 (2016).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhang, J. D.

Zhang, Q.

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Zhang, W. L.

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, J.

Zhao, X.

Zhao, X. G.

Zhao, Y.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zheludev, N. I.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhong, J.

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

Zhong, X.

Zhou, L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Zhou, W. C.

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

Zhu, B.

Zhu, B. O.

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in X-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

Zhu, J. F.

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Zhu, W.

Zografopoulos, D. C.

G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Adv. Mater. (2)

X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu, and H. Li, “Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio,” Adv. Mater. 28(41), 9223–9230 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, “Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity,” Adv. Mater. 28(11), 2229–2237 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

S. Yin, J. F. Zhu, W. D. Xu, W. Jiang, J. Yuan, G. Yin, L. J. Xie, Y. B. Ying, and Y. G. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, B. Yang, N. Singh, and C. K. Lee, “Active MEMS metamaterials for THz bandwidth control,” Appl. Phys. Lett. 110(16), 161108 (2017).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Carbon (1)

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Chin. Phys. B (1)

Y. Yang, Y. Huang, G. Wen, J. Zhong, H. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire,” Chin. Phys. B 21(3), 038501 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical circuit model for periodic arrays of graphene disks,” IEEE J. Quantum Electron. 51(9), 7000507 (2015).
[Crossref]

IEEE Photonics J. (2)

S. Lee and S. Kim, “Optical absorption characteristic in thin a-Si film embedded between an ultrathin metal grating and a metal reflector,” IEEE Photonics J. 5(5), 4800610 (2013).
[Crossref]

N. Wang, J. M. Tong, W. C. Zhou, W. Jiang, J. L. Li, X. C. Dong, and S. Hu, “Novel quadruple-band microwave metamaterial absorber,” IEEE Photonics J. 7, 5500506 (2015).

J. Appl. Phys. (2)

R. Yahiaoui, S. Y. Tan, L. Q. Cong, R. Singh, F. P. Yan, and W. L. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in X-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

J. Electromagn. Waves Appl. (1)

B. Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, “Novel three-band microwave metamaterial absorber,” J. Electromagn. Waves Appl. 28(12), 1478–1486 (2014).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

B. X. Wang and G. Z. Wang, “Temperature tunable metamaterial absorber at THz frequencies,” J. Mater. Sci. Mater. Electron. 28(12), 8487–8493 (2017).
[Crossref]

J. Microelectromech. Syst. (1)

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. K. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24(3), 525–527 (2015).
[Crossref]

J. Opt. Soc. Am. B (3)

Journal of Science: Advanced Materials and Devices (1)

D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” Journal of Science: Advanced Materials and Devices 1, 65–68 (2016).

Jpn. J. Appl. Phys. (1)

S. Suzuki, M. Takamura, and H. Yamamoto, “Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region,” Jpn. J. Appl. Phys. 55(6S1), 06GF08 (2016).
[Crossref]

Microsystems & Nanoengineering (1)

M. K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. T. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsystems & Nanoengineering 3, 17033–17045 (2017).
[Crossref]

Nano Lett. (1)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Nanoscale (1)

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Clich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

C. F. Ding, L. K. Jiang, L. Wu, R. M. Gao, D. G. Xu, G. Z. Zhang, and J. Q. Yao, “Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials,” Opt. Commun. 350, 103–107 (2015).
[Crossref]

Opt. Express (7)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. Appl. (1)

G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, and R. Gajic, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Phys. Rev. B (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Plasmonics (1)

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 1–6 (2017).
[Crossref]

Sci. Rep. (3)

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

K. Lee, H. J. Choi, J. Son, H. S. Park, J. Ahn, and B. Min, “THz near-field spectral encoding imaging using a rainbow metasurface,” Sci. Rep. 5(1), 14403 (2015).
[Crossref] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Designed terahertz GMA with tunable absorption frequency, amplitude and bandwidth: (a) schematic of GMA, (b) close-up view of unit cell, and (c) cross-sectional view of GMA.
Fig. 2
Fig. 2 Calculated absorption spectra of the designed terahertz metamaterial absorber consisting of (a) only a graphene disc array with different Fermi energy and (b) two graphene discs array with different Fermi energy.
Fig. 3
Fig. 3 Equivalent circuit of the proposed active graphene metamaterial absorber: (a) Three-dimensional sketch of the active absorber, (b) RLC equivalent circuit, and (c) tunable elements of unit cell
Fig. 4
Fig. 4 Calculated (a) absorption spectra and (b) FWHM bandwidth of the graphene metamaterial absorber at various reconfiguration states
Fig. 5
Fig. 5 Resonant current distributions in one cell at different absorption peaks: (a) top and (b) bottom layers at 1.448THz, and (a) top and (b) bottom layers at 1.498THz
Fig. 6
Fig. 6 Calculated (a) absorption spectra and (b) change in absorption intensity at 1.1461THz of the graphene metamaterial absorber at various reconfiguration states
Fig. 7
Fig. 7 Real and imaginary parts of the retrieved relative effective impedances at various reconfiguration states (normalized to free space impedance).
Fig. 8
Fig. 8 Calculated (a) absorption spectra and (b) change in center frequency and more 90% absorption bandwidth of the graphene metamaterial absorber at various reconfiguration states
Fig. 9
Fig. 9 Electro-optic switching characteristics of the proposed graphene absorber between two reconfiguration states: (a) absorption peak and (b) absorption frequency

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ(ω)=j e 2 k B T π 2 (ω+jΓ) ( E F k B T +2ln( E F e k B T +1))
R= 2 e 2 τ E F K 1 P y 2 π S 1 2
L= 2 e 2 E F K 1 P y 2 π S 1 2
C= ε eff q 11 π 2 S 1 2 K 1 P y 2
z eff (ω)= (1+ S 11 ) 2 S 21 2 (1+ S 11 ) 2 S 21 2

Metrics