Abstract

A series of Yb3+, Ho3+, Tm3+ doped NaLuF4-based nanostructures and microstructures with controllable crystalline phases and morphologies were designed via adjusting the parameters of the oleic acid-assisted hydrothermal method. It is found that increasing the NH4F content and prolonging the reaction time to conduce the formation of β-NaLuF4 and the possible evolution process was proposed. Besides, the dependence of upconversion emission on sensitizer (Yb3+) concentration and pump power in Yb3+-Ho3+ and Yb3+-Tm3+ codoped β-NaLuF4 was investigated. On this basis, a tunable multicolor was achieved in NaLuF4:Yb3+/Ho3+/Tm3+ microrods. It is worth mentioning that white-light output with the calculated CIE color coordinate of (0.333, 0.330) was realized in the microrods, and the triply doped samples presented an outstanding capacity for color controlling and satisfactory color stability in the white region as well as lower threshold pump power density and lower optimal excitation pump power density for white-emission, which present great potential applications in the field of color display and white light-emitting diodes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable white upconversion luminescence from Yb3+-Tm3+-Mn2+ tri-doped perovskite nanocrystals

E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang
Opt. Mater. Express 4(6) 1186-1196 (2014)

Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions

Venkataramanan Mahalingam, Rafik Naccache, Fiorenzo Vetrone, and John A. Capobianco
Opt. Express 20(1) 111-119 (2012)

Yb3+, Tm3+ and Ho3+ triply-doped tellurite core-cladding optical fiber for white light generation

D. Manzani, Y. Ledemi, I. Skripachev, Y. Messaddeq, S. J. L. Ribeiro, R. E. P. de Oliveira, and C. J. S. de Matos
Opt. Mater. Express 1(8) 1515-1526 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and Anti-stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  2. C. X. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
    [Crossref]
  3. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [Crossref] [PubMed]
  4. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref] [PubMed]
  5. J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
    [Crossref] [PubMed]
  6. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
    [Crossref] [PubMed]
  7. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
    [Crossref]
  8. H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
    [Crossref] [PubMed]
  9. K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
    [Crossref] [PubMed]
  10. H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
    [Crossref]
  11. H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
    [Crossref]
  12. Z. Li and Y. Zhang, “Nanocrystals with Multicolor Upconversion Fluorescence Emission,” Angew. Chem. Int. Ed. Engl. 45(46), 7732–7735 (2006).
    [Crossref] [PubMed]
  13. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
    [Crossref]
  14. F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
    [Crossref]
  15. C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
    [Crossref]
  16. H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
    [Crossref]
  17. M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
    [Crossref] [PubMed]
  18. J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
    [Crossref] [PubMed]
  19. N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
    [Crossref]
  20. X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
    [Crossref]
  21. J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
    [Crossref] [PubMed]
  22. Y. Gao, Q. Zhao, Z. H. Xu, and Y. G. Sun, “Hydrothermally derived NaLuF4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ and Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties,” New J. Chem. 38(6), 2629–2638 (2014).
    [Crossref]
  23. C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
    [Crossref]
  24. N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
    [Crossref]
  25. W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
    [Crossref]
  26. M. A. Chamarro and R. Cases, “Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42(5), 267–274 (1988).
    [Crossref]
  27. N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
    [Crossref]
  28. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [Crossref] [PubMed]
  29. J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
    [Crossref]
  30. V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
    [Crossref]
  31. W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
    [Crossref]
  32. X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Ho3+ to Yb3+ back transfer and thermal quenching of upconversion green emission in fluoride crystals,” Appl. Phys. Lett. 63(19), 2606–2608 (1993).
    [Crossref]
  33. A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. France 50(12), 1463–1482 (1989).
    [Crossref]
  34. G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
    [Crossref]
  35. V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, “Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions,” Opt. Express 20(1), 111–119 (2012).
    [Crossref] [PubMed]
  36. E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang, “Tunable white upconversion luminescence from Yb3+-Tm3+-Mn2+ tri-doped perovskite nanocrystals,” Opt. Mater. Express 4(6), 1186–1196 (2014).
    [Crossref]

2017 (1)

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

2016 (1)

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

2015 (3)

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
[Crossref] [PubMed]

2014 (7)

Y. Gao, Q. Zhao, Z. H. Xu, and Y. G. Sun, “Hydrothermally derived NaLuF4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ and Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties,” New J. Chem. 38(6), 2629–2638 (2014).
[Crossref]

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
[Crossref]

E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang, “Tunable white upconversion luminescence from Yb3+-Tm3+-Mn2+ tri-doped perovskite nanocrystals,” Opt. Mater. Express 4(6), 1186–1196 (2014).
[Crossref]

2012 (4)

V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, “Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions,” Opt. Express 20(1), 111–119 (2012).
[Crossref] [PubMed]

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

2011 (3)

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
[Crossref] [PubMed]

2010 (2)

C. X. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

2009 (3)

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
[Crossref]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

2008 (2)

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

2007 (2)

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

2006 (1)

Z. Li and Y. Zhang, “Nanocrystals with Multicolor Upconversion Fluorescence Emission,” Angew. Chem. Int. Ed. Engl. 45(46), 7732–7735 (2006).
[Crossref] [PubMed]

2005 (2)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

2004 (2)

F. Auzel, “Upconversion and Anti-stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

1993 (1)

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Ho3+ to Yb3+ back transfer and thermal quenching of upconversion green emission in fluoride crystals,” Appl. Phys. Lett. 63(19), 2606–2608 (1993).
[Crossref]

1989 (1)

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. France 50(12), 1463–1482 (1989).
[Crossref]

1988 (1)

M. A. Chamarro and R. Cases, “Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42(5), 267–274 (1988).
[Crossref]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Ågren, H.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and Anti-stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Bass, M.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Ho3+ to Yb3+ back transfer and thermal quenching of upconversion green emission in fluoride crystals,” Appl. Phys. Lett. 63(19), 2606–2608 (1993).
[Crossref]

Batentschuk, M.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
[Crossref] [PubMed]

Bhakoo, K. K.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Biner, D.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Brabec, C. J.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
[Crossref] [PubMed]

Brenier, A.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. France 50(12), 1463–1482 (1989).
[Crossref]

Capobianco, J. A.

V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, “Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions,” Opt. Express 20(1), 111–119 (2012).
[Crossref] [PubMed]

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
[Crossref]

Cases, R.

M. A. Chamarro and R. Cases, “Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42(5), 267–274 (1988).
[Crossref]

Chai, B. H. T.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Ho3+ to Yb3+ back transfer and thermal quenching of upconversion green emission in fluoride crystals,” Appl. Phys. Lett. 63(19), 2606–2608 (1993).
[Crossref]

Chai, R.

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

Chamarro, M. A.

M. A. Chamarro and R. Cases, “Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42(5), 267–274 (1988).
[Crossref]

Chen, G.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Chen, Y.

H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
[Crossref]

Chen, Z. T.

Dai, C. J.

H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
[Crossref]

Damasco, J. A.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Ding, S.

Feng, W.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Frei, G.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Gai, S. L.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

Gao, W.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

Gao, X.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Gao, Y.

Y. Gao, Q. Zhao, Z. H. Xu, and Y. G. Sun, “Hydrothermally derived NaLuF4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ and Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties,” New J. Chem. 38(6), 2629–2638 (2014).
[Crossref]

Gao, Y. C.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

García-Recilla, S.

J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Goggi, J. L.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Güdel, H. U.

J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Han, Q. Y.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hao, H. Y.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

He, E. J.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

He, F.

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

He, G.

He, J. F.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Hehlen, M. P.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hong, P.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Ho3+ to Yb3+ back transfer and thermal quenching of upconversion green emission in fluoride crystals,” Appl. Phys. Lett. 63(19), 2606–2608 (1993).
[Crossref]

Huang, H.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Huang, L.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Huang, S. H.

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

Huang, S. S.

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Hui, C. L.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Kong, D. Y.

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Kong, X.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Krämer, K. W.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Li, A. M.

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

Li, C.

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

Li, C. X.

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

C. X. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Li, F.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Li, T. W.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Li, Z.

Z. Li and Y. Zhang, “Nanocrystals with Multicolor Upconversion Fluorescence Emission,” Angew. Chem. Int. Ed. Engl. 45(46), 7732–7735 (2006).
[Crossref] [PubMed]

Lian, H. Z.

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Lin, H.

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
[Crossref]

Lin, J.

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

C. X. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Liu, Q.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Liu, X.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Liu, Y.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Lovell, J. F.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Lu, H. Y.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Lüthi, S. R.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Ma, Y. Y.

Mahalingam, V.

V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, “Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions,” Opt. Express 20(1), 111–119 (2012).
[Crossref] [PubMed]

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
[Crossref]

Moncorge, R.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. France 50(12), 1463–1482 (1989).
[Crossref]

Naccache, R.

V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, “Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions,” Opt. Express 20(1), 111–119 (2012).
[Crossref] [PubMed]

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
[Crossref]

Niu, N.

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

Osvet, A.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
[Crossref] [PubMed]

Pedrini, C.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. France 50(12), 1463–1482 (1989).
[Crossref]

Peng, C.

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

Pinna, L.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
[Crossref] [PubMed]

Prasad, P. N.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Qin, W.

Qin, W. P.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Quan, Z. W.

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Ren, N.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Richards, B. S.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Rubin, J.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. France 50(12), 1463–1482 (1989).
[Crossref]

Shalav, A.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Shang, M.

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

Shao, W.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Shi, F.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Shi, G.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Somesfalean, G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Song, E. H.

Song, W.

K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
[Crossref] [PubMed]

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Song, X. J.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Song, Y. L.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Speghini, A.

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
[Crossref]

Su, J. G.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Sun, H. D.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Sun, Q.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Sun, Y.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Sun, Y. G.

Y. Gao, Q. Zhao, Z. H. Xu, and Y. G. Sun, “Hydrothermally derived NaLuF4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ and Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties,” New J. Chem. 38(6), 2629–2638 (2014).
[Crossref]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Tan, T. T. Y.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Teng, D. D.

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

Tian, L.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Trupke, T.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Tu, L.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Vetrone, F.

V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, “Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions,” Opt. Express 20(1), 111–119 (2012).
[Crossref] [PubMed]

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
[Crossref]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Wang, F. P.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Wang, H. Q.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
[Crossref] [PubMed]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Wang, J. S.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Wang, L.

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

Wang, N. L.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Wang, R. B.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

Wang, R. X.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Wang, Y.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Wang, Y. X.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Wei, W.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Wu, M.

Xu, D. K.

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Xu, Z. H.

Y. Gao, Q. Zhao, Z. H. Xu, and Y. G. Sun, “Hydrothermally derived NaLuF4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ and Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties,” New J. Chem. 38(6), 2629–2638 (2014).
[Crossref]

Yan, X. H.

H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
[Crossref]

Yang, J.

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Yang, P. P.

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Yang, S. H.

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

Yang, T.

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Ye, K. X.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Ye, S.

Yuan, Z.

Zhai, X. S.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

Zhang, H.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Zhang, Q. Y.

Zhang, X.

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

Zhang, X. R.

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Zhang, X. X.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Ho3+ to Yb3+ back transfer and thermal quenching of upconversion green emission in fluoride crystals,” Appl. Phys. Lett. 63(19), 2606–2608 (1993).
[Crossref]

Zhang, X. Y.

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

Zhang, Y.

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

Z. Li and Y. Zhang, “Nanocrystals with Multicolor Upconversion Fluorescence Emission,” Angew. Chem. Int. Ed. Engl. 45(46), 7732–7735 (2006).
[Crossref] [PubMed]

Zhang, Y. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Zhang, Y. L.

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

Zhang, Z. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Zhao, D.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Zhao, J.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Zhao, Q.

Y. Gao, Q. Zhao, Z. H. Xu, and Y. G. Sun, “Hydrothermally derived NaLuF4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ and Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties,” New J. Chem. 38(6), 2629–2638 (2014).
[Crossref]

Zheng, H. R.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

Zheng, J.

H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
[Crossref]

Zheng, K.

ACS Appl. Mater. Interfaces (1)

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Adv. Mater. 23(22-23), 2675–2680 (2011).
[Crossref] [PubMed]

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation,” Adv. Mater. 21(40), 4025–4028 (2009).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

Z. Li and Y. Zhang, “Nanocrystals with Multicolor Upconversion Fluorescence Emission,” Angew. Chem. Int. Ed. Engl. 45(46), 7732–7735 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ upconversion phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Ho3+ to Yb3+ back transfer and thermal quenching of upconversion green emission in fluoride crystals,” Appl. Phys. Lett. 63(19), 2606–2608 (1993).
[Crossref]

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminescence in rare-earth-ion-doped nanocrystals,” Appl. Phys. Lett. 91(13), 133103 (2007).
[Crossref]

Chem. Mater. (3)

W. Wei, Y. Zhang, R. Chen, J. L. Goggi, N. Ren, L. Huang, K. K. Bhakoo, H. D. Sun, and T. T. Y. Tan, “Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles,” Chem. Mater. 26(18), 5183–5186 (2014).
[Crossref]

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and Anti-stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

M. Shang, C. Li, and J. Lin, “How to produce white light in a single-phase host?” Chem. Soc. Rev. 43(5), 1372–1386 (2014).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Chemistry (1)

J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, and J. Lin, “Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 nm,” Chemistry 15(18), 4649–4655 (2009).
[Crossref] [PubMed]

CrystEngComm (2)

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, and R. B. Wang, “Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation,” CrystEngComm 16(29), 6697–6706 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

J. Lumin. (1)

M. A. Chamarro and R. Cases, “Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42(5), 267–274 (1988).
[Crossref]

J. Mater. Chem. (3)

N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, and P. P. Yang, “Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+ (Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence,” J. Mater. Chem. 22(40), 21613–21623 (2012).
[Crossref]

C. X. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

N. Niu, P. P. Yang, F. He, X. Zhang, S. L. Gai, C. X. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Lin, D. K. Xu, A. M. Li, D. D. Teng, S. H. Yang, and Y. L. Zhang, “Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11754–11765 (2015).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

X. Gao, T. W. Li, J. F. He, K. X. Ye, X. J. Song, N. L. Wang, J. G. Su, C. L. Hui, and X. Y. Zhang, “Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties,” J. Mater. Sci. Mater. Electron. 28(16), 11644–11653 (2017).
[Crossref]

J. Nanomater. (1)

H. Lin, X. H. Yan, J. Zheng, C. J. Dai, and Y. Chen, “Upconversion luminescence and visible-infrared properties of β-NaLuF4:Er3+ microcrystals synthesized by the surfactant-assisted hydrothermal method,” J. Nanomater. 2014, 1 (2014).
[Crossref]

J. Phys. Chem. B (1)

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, “Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process,” J. Phys. Chem. C 112(35), 13395–13404 (2008).
[Crossref]

J. Phys. France (1)

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. France 50(12), 1463–1482 (1989).
[Crossref]

Nat. Nanotechnol. (1)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

New J. Chem. (1)

Y. Gao, Q. Zhao, Z. H. Xu, and Y. G. Sun, “Hydrothermally derived NaLuF4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ and Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties,” New J. Chem. 38(6), 2629–2638 (2014).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

J. F. Suyver, A. Aebischer, S. García-Recilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

RSC Advances (2)

N. Niu, F. He, S. H. Huang, S. L. Gai, X. Zhang, and P. P. Yang, “Hierarchical bundles structure of β-NaLuF4: facile synthesis, shape evolution, and luminescent properties,” RSC Advances 2(27), 10337–10344 (2012).
[Crossref]

H. Y. Lu, H. Y. Hao, G. Shi, Y. C. Gao, R. X. Wang, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The optical path of spectral measurement system.
Fig. 2
Fig. 2 XRD patterns of samples prepared with different amounts of NH4F at 180 °C for 8 h (* stands for the diffraction peaks of NaF).
Fig. 3
Fig. 3 SEM images of the samples prepared with different amounts of NH4F: (A) 4 mmol, (B) 6 mmol, (C) 9 mmol, (D) 12 mmol at 180 °C for 8 h.
Fig. 4
Fig. 4 XRD patterns of samples prepared with 9 mmol NH4F at 180 °C for different reaction time (* stands for the diffraction peaks of NaF).
Fig. 5
Fig. 5 SEM images of the samples prepared with 9 mmol NH4F at 180 °C for different reaction time: (A) 4 h, (B) 8 h, (C) 12 h, (D) 20 h.
Fig. 6
Fig. 6 UC luminescence spectra of (A) β-NaLuF4:x%Yb3+, 1%Ho3+ (x = 5, 10, 15, 20) and (B) β-NaLuF4:x%Yb3+, 0.5%Tm3+ (x = 5, 10, 15, 20).
Fig. 7
Fig. 7 The dependence of UC luminescence spectra on pump power of β-NaLuF4:Yb3+, Ho3+ and β-NaLuF4:Yb3+, Tm3+ and ions energy level diagram together with possible electronic transition mechanisms. UC spectra of (A) β-NaLuF4:Yb3+, Ho3+, (C) β-NaLuF4:Yb3+, Tm3+, (B, D) corresponding log-log plots of UC emission intensity versus the pump power, (E) ions energy level diagram together with possible electronic transition mechanisms.
Fig. 8
Fig. 8 (A) Room-temperature UC spectra, (B) energy level diagrams of Yb3+, Ho3+ and Tm3+ ions together with the proposed transition paths, and (C) CIE chromaticity coordinate diagram of prepared β-NaLuF4:x%Yb3+, 0.5%Ho3+, 5%Tm3+ (x = 5, 10, 20) nanoparticles. The arrow in CIE chromaticity diagram represents the color coordinates movement trend with the increase of Yb3+. The red band at 751 nm was neglected in calculation, given that it is relatively weaker, too close to near infrared (NIR) region to make contributions to light color and it overlapped with NIR band at 800 nm of Tm3+. The arrow represents the movement trend of the color coordinates as the temperature rises.
Fig. 9
Fig. 9 The UC properties of β-NaLuF4:Yb3+, Ho3+, Tm3+ with tunable visual color output by adjusting the pump power. (A) Room-temperature UC spectra of β-NaLuF4:20%Yb3+, 0.5%Ho3+, 5%Tm3+ sample excited by 980 nm LD with various output, (B) corresponding log-log plots of the UC emission intensity versus the pump power in triply-doped sample, (C) corresponding CIE chromaticity coordinate diagram. The arrow in CIE chromaticity diagram represents the movement trend of the color coordinates as the pump power increases.
Fig. 10
Fig. 10 The UC luminescence properties of β-NaLuF4:Yb3+, Ho3+, Tm3+ with tunable visual color output via manipulating the ambient temperature. (A) UC spectra and (B) the ratios of different color intensity and (C) corresponding CIE chromaticity coordinate diagram of β-NaLuF4:20%Yb3+, 0.5%Ho3+, 5%Tm3+ sample at various ambient temperature. The arrow in CIE chromaticity diagram represents the movement trend of the color coordinates as the temperature rises.

Tables (1)

Tables Icon

Table 1 Pump Power Density for White Emission

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I P n .

Metrics