Abstract

Plasmonic nanostructures with high tunability of the plasmon resonance over a wide wavelength range and high thermal stability are increasingly in demand for many applications. To realize such a plasmonic nanostructure, combining the high tunability of a semishell nanostructure and a wide working band of the plasmon resonance of Al is one solution. By heating directly at high temperature, the thermal stability of an Al semishell is investigated herein. This investigation demonstrates the high thermal stability of the Al semishell, although Al has a lower melting point than other plasmonic materials and intrinsic passivation characteristics that can degrade optical properties. The shifts in plasmon resonance observed experimentally before and after heating were analyzed using the finite element method, revealing the factors that contributed to the shift.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures

Yael Gutierrez, Dolores Ortiz, Juan M. Sanz, Jose M. Saiz, Francisco Gonzalez, Henry O. Everitt, and Fernando Moreno
Opt. Express 24(18) 20621-20631 (2016)

Synthesis and optical properties of multifunctional CdS nanostructured dielectric nanocomposites

Chirantan Dey, Atiar Rahaman Molla, Madhumita Goswami, Govind Prasad Kothiyal, and Basudeb Karmakar
J. Opt. Soc. Am. B 31(8) 1761-1770 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
    [Crossref] [PubMed]
  2. H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
    [Crossref] [PubMed]
  3. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructure: influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
    [Crossref]
  4. A. Ahmadivand, N. Pala, and D. Ö. Güney, “Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters,” Opt. Express 23(11), A682–A691 (2015).
    [Crossref] [PubMed]
  5. U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
    [Crossref] [PubMed]
  6. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]
  7. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  8. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  9. B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
    [Crossref] [PubMed]
  10. X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
    [Crossref] [PubMed]
  11. S. D. Campbell and R. W. Ziolkowski, “Near-field directive beams from passive and active asymmetric optical nanoantennas,” IEEE Journal. 21(4), 4800112 (2015).
  12. H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of nanosized Au particle,” J. Vac. Sci. Technol. B 17(5), 1906–1911 (1999).
    [Crossref]
  13. N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
    [Crossref] [PubMed]
  14. T. Wu, S. Yang, and X. Li, “Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells,” Opt. Express 21(6), 7811–7820 (2013).
    [Crossref] [PubMed]
  15. J. Ye, Y. Kong, and C. Liu, “Plasmon coupling of magnetic resonances in an asymmetric gold semishell,” J. Phys. D Appl. Phys. 49(20), 205106 (2016).
    [Crossref]
  16. Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
    [Crossref] [PubMed]
  17. Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
    [Crossref] [PubMed]
  18. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  19. K. Q. Le and J. Bai, “Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance,” J. Opt. Soc. Am. B 32(4), 595–600 (2015).
    [Crossref]
  20. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
    [Crossref] [PubMed]
  21. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  22. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [Crossref] [PubMed]
  23. I. Alessandri, M. Ferroni, and L. E. Depero, “Plasmonic heating –assisted transformation of SiO2/Au core/shell nanospheres (Au nanoshells): caveats and opportunities for SERS and direct laser writing,” Plasmonic. 8(1), 129–132 (2013).
    [Crossref]
  24. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  25. X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
    [Crossref] [PubMed]
  26. P. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13(6), 2287–2298 (1976).
    [Crossref]
  27. J. Sun and S. L. Simon, “The melting behavior of aluminum nanoparticles,” Thermochim. Acta 463(1-2), 32–40 (2007).
    [Crossref]
  28. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  29. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref] [PubMed]
  30. B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
    [Crossref]
  31. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys. 92(3), 1649–1656 (2002).
    [Crossref]
  32. G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
    [Crossref]
  33. J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
    [Crossref]
  34. R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jap. J. Appl. Phys. 53, 3
    [Crossref]
  35. H. J. Hagemman, W. Gudat, and C. Kunz, “Optical constant from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
    [Crossref]
  36. I. H. Malitson, “Refractive and Dispersion of Synthetic Sapphire,” J. Opt. Soc. Am. 52(12), 1377–1379 (1962).
    [Crossref]
  37. F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
    [Crossref]

2017 (3)

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
[Crossref] [PubMed]

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

2016 (2)

J. Ye, Y. Kong, and C. Liu, “Plasmon coupling of magnetic resonances in an asymmetric gold semishell,” J. Phys. D Appl. Phys. 49(20), 205106 (2016).
[Crossref]

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

2015 (7)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

K. Q. Le and J. Bai, “Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance,” J. Opt. Soc. Am. B 32(4), 595–600 (2015).
[Crossref]

S. D. Campbell and R. W. Ziolkowski, “Near-field directive beams from passive and active asymmetric optical nanoantennas,” IEEE Journal. 21(4), 4800112 (2015).

A. Ahmadivand, N. Pala, and D. Ö. Güney, “Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters,” Opt. Express 23(11), A682–A691 (2015).
[Crossref] [PubMed]

B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
[Crossref] [PubMed]

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

2014 (2)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

2013 (4)

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

T. Wu, S. Yang, and X. Li, “Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells,” Opt. Express 21(6), 7811–7820 (2013).
[Crossref] [PubMed]

I. Alessandri, M. Ferroni, and L. E. Depero, “Plasmonic heating –assisted transformation of SiO2/Au core/shell nanospheres (Au nanoshells): caveats and opportunities for SERS and direct laser writing,” Plasmonic. 8(1), 129–132 (2013).
[Crossref]

2012 (1)

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

2011 (3)

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
[Crossref] [PubMed]

2010 (2)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

2009 (4)

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructure: influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

2008 (2)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

2007 (1)

J. Sun and S. L. Simon, “The melting behavior of aluminum nanoparticles,” Thermochim. Acta 463(1-2), 32–40 (2007).
[Crossref]

2002 (1)

L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys. 92(3), 1649–1656 (2002).
[Crossref]

1999 (1)

H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of nanosized Au particle,” J. Vac. Sci. Technol. B 17(5), 1906–1911 (1999).
[Crossref]

1976 (1)

P. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13(6), 2287–2298 (1976).
[Crossref]

1975 (1)

1962 (1)

Ahmadivand, A.

Alessandri, I.

I. Alessandri, M. Ferroni, and L. E. Depero, “Plasmonic heating –assisted transformation of SiO2/Au core/shell nanospheres (Au nanoshells): caveats and opportunities for SERS and direct laser writing,” Plasmonic. 8(1), 129–132 (2013).
[Crossref]

Ali, T. A.

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Ayala-Orozco, C.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructure: influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Bai, J.

Bishnoi, S. W.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Boltasseva, A.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Borel, J.-P.

P. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13(6), 2287–2298 (1976).
[Crossref]

Borghs, G.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Buffat, P.

P. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13(6), 2287–2298 (1976).
[Crossref]

Campbell, S. D.

S. D. Campbell and R. W. Ziolkowski, “Near-field directive beams from passive and active asymmetric optical nanoantennas,” IEEE Journal. 21(4), 4800112 (2015).

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Charron, H.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Chen, J.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Chen, K.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Chen, L.

Choi, C. J.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Cunningham, B. T.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Dao, T. D.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Depero, L. E.

I. Alessandri, M. Ferroni, and L. E. Depero, “Plasmonic heating –assisted transformation of SiO2/Au core/shell nanospheres (Au nanoshells): caveats and opportunities for SERS and direct laser writing,” Plasmonic. 8(1), 129–132 (2013).
[Crossref]

Dorpe, P. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Du, W.

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

Duan, T.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Ferroni, M.

I. Alessandri, M. Ferroni, and L. E. Depero, “Plasmonic heating –assisted transformation of SiO2/Au core/shell nanospheres (Au nanoshells): caveats and opportunities for SERS and direct laser writing,” Plasmonic. 8(1), 129–132 (2013).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fujita, K.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Gérard, D.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructure: influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Goodman, A. M.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Gouriet, J.-B.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Gu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Gudat, W.

Guler, U.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Güney, D. Ö.

Hagemman, H. J.

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hiraga, K.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

Huang, S.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
[Crossref] [PubMed]

Ishii, S.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Jeurgens, L. P. H.

L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys. 92(3), 1649–1656 (2002).
[Crossref]

Joshi, A.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Kagawa, Y.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

Kang, X.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Kildishev, A. V.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Kim, B.-N.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Kong, Y.

J. Ye, Y. Kong, and C. Liu, “Plasmon coupling of magnetic resonances in an asymmetric gold semishell,” J. Phys. D Appl. Phys. 49(20), 205106 (2016).
[Crossref]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Kunz, C.

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Le, K. Q.

Li, X.

Litrico, G.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Liu, B.

X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
[Crossref] [PubMed]

Liu, C.

Liu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Liu, L.

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Liu, X.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Lodewijks, K.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Lu, H.

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

Luo, J.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Ma, R.

Maes, G.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Maier, S. A.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Malitson, I. H.

Martin, J.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Meng, X.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Mirin, N. A.

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

Mitchell, T.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Mittemeijer, E. J.

L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys. 92(3), 1649–1656 (2002).
[Crossref]

Miyazaki, T.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

Morita, K.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

Mukherjee, S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Nabatame, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nagao, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Naik, G. V.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Nanda, S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Ndukaife, J. C.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Neumann, O.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Niu, G.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Nnanna, A. G. A.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Pala, N.

Pan, P.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Plain, J.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

Pradhan, A. K.

B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
[Crossref] [PubMed]

Pradhan, S. K.

B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
[Crossref] [PubMed]

Proulx, P.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Proust, J.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructure: influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Rambaud, P.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Ren, B.

X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
[Crossref] [PubMed]

Roy, R.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Roy, W. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Rutherford, G. N.

B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
[Crossref] [PubMed]

Santiago, K. C.

B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
[Crossref] [PubMed]

Schiff, R.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Shea, M.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Simon, S. L.

J. Sun and S. L. Simon, “The melting behavior of aluminum nanoparticles,” Thermochim. Acta 463(1-2), 32–40 (2007).
[Crossref]

Sloof, W. G.

L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys. 92(3), 1649–1656 (2002).
[Crossref]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Sun, J.

J. Sun and S. L. Simon, “The melting behavior of aluminum nanoparticles,” Thermochim. Acta 463(1-2), 32–40 (2007).
[Crossref]

Takei, H.

H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of nanosized Au particle,” J. Vac. Sci. Technol. B 17(5), 1906–1911 (1999).
[Crossref]

Tanaka, K.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Tang, S.

X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
[Crossref] [PubMed]

Tang, Y.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Tichelaar, F. D.

L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys. 92(3), 1649–1656 (2002).
[Crossref]

Urban, A. S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Urban, C.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Van Dorpe, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Vlaminck, I. D.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Wan, M.

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

Wang, Z.

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

Wu, D.

Wu, H. Y.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Wu, T.

Xiao, B.

B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
[Crossref] [PubMed]

Yang, S.

Yao, W.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Ye, H.

Ye, J.

J. Ye, Y. Kong, and C. Liu, “Plasmon coupling of magnetic resonances in an asymmetric gold semishell,” J. Phys. D Appl. Phys. 49(20), 205106 (2016).
[Crossref]

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Ye, X.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Yi, Y.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Yi, Z.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Yoshida, H.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

Yu, L.

Yu, Z.

Zhan, P.

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

Zhang, W.

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Zheng, N.

X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Ziolkowski, R. W.

S. D. Campbell and R. W. Ziolkowski, “Near-field directive beams from passive and active asymmetric optical nanoantennas,” IEEE Journal. 21(4), 4800112 (2015).

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

ACS Nano (4)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching if Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Acta Mater. (1)

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[Crossref]

Adv. Mater. (1)

X. Huang, S. Tang, B. Liu, B. Ren, and N. Zheng, “Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture,” Adv. Mater. 23(30), 3420–3425 (2011).
[Crossref] [PubMed]

Adv. Powder Technol. (1)

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Appl. Phys. Lett. (1)

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructure: influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

IEEE Journal. (1)

S. D. Campbell and R. W. Ziolkowski, “Near-field directive beams from passive and active asymmetric optical nanoantennas,” IEEE Journal. 21(4), 4800112 (2015).

J. Appl. Phys. (1)

L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys. 92(3), 1649–1656 (2002).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishell,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Ye, Y. Kong, and C. Liu, “Plasmon coupling of magnetic resonances in an asymmetric gold semishell,” J. Phys. D Appl. Phys. 49(20), 205106 (2016).
[Crossref]

J. Vac. Sci. Technol. B (1)

H. Takei, “Surface-adsorbed polystyrene spheres as a template for nanosized metal particle formation: optical properties of nanosized Au particle,” J. Vac. Sci. Technol. B 17(5), 1906–1911 (1999).
[Crossref]

Nano Lett. (4)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

P. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13(6), 2287–2298 (1976).
[Crossref]

Plasmonic. (1)

I. Alessandri, M. Ferroni, and L. E. Depero, “Plasmonic heating –assisted transformation of SiO2/Au core/shell nanospheres (Au nanoshells): caveats and opportunities for SERS and direct laser writing,” Plasmonic. 8(1), 129–132 (2013).
[Crossref]

Sci. Rep. (4)

Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, and Y. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Sci. Rep. 6(1), 32314 (2016).
[Crossref] [PubMed]

Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, and Z. Wang, “Ultra-broadband tunable resonant light trapping in two-dimensional randomly microstructured plasmonic-photonic absorber,” Sci. Rep. 7, 43803 (2017).
[Crossref] [PubMed]

B. Xiao, S. K. Pradhan, K. C. Santiago, G. N. Rutherford, and A. K. Pradhan, “Enhanced optical transmission and Fano resonance through a nanostructured metal thin film,” Sci. Rep. 5(1), 10393 (2015).
[Crossref] [PubMed]

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Small (1)

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Thermochim. Acta (1)

J. Sun and S. L. Simon, “The melting behavior of aluminum nanoparticles,” Thermochim. Acta 463(1-2), 32–40 (2007).
[Crossref]

Other (1)

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jap. J. Appl. Phys. 53, 3
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Image of Al semishells fabricated on glass substrate.
Fig. 2
Fig. 2 Image of samples after heating at 100 °C, 200 °C, 300 °C and 400 °C for 1, 5, and 10 h. The samples in the left column were stored at room temperature. Al semishells are on the left side of samples, which have darker color than the right side.
Fig. 3
Fig. 3 (a) SEM image of sample surface with adsorbed Al semishells composed of a 100 nm SiO2 core and a 10-nm Al shell. The density of semishells is 14.25/μm2. (b) SEM images of Au and Al semishells before and after heating. Both semishells are composed of 100-nm SiO2 core and 10-nm metal shell. The heating temperature was 250 °C for Au semishells and 400 °C for Al semishells. The inset white scale bar corresponds to 100 nm.
Fig. 4
Fig. 4 (Left side graph) Absorption peak difference ΔA and plasmon resonance shift Δλ are depicted. (Right side graph) (a) ΔA in terms of heating temperature and time. (b) ΔA in terms of Δλ. The red arrows indicate the direction increasing heating temperature and time. The absorption spectra of plots in the same dashed circles have the same characteristics with respect to the deformation of spectra.
Fig. 5
Fig. 5 Representative absorption spectra of Al semishells from each phase in Fig. 4(b).
Fig. 6
Fig. 6 (a) Schematic of the simulation model of Al semishell with oxide shell. (b) Plots of the extinction peak of numerical extinction spectra of Al semishell. Black dashed lines indicate tAl. The black circle indicates the point at which we assume the initial shape of Al semishells fabricated in our experiment.

Metrics