Abstract

Reconfiguration of silicon photonic integrated circuits relying on the weak, volatile thermo-optic or electro-optic effect of silicon usually suffers from a large footprint and energy consumption. Here, integrating a phase-change material, Ge2Sb2Te5 (GST) with silicon microring resonators, we demonstrate an energy-efficient, compact, non-volatile, reprogrammable platform. By adjusting the energy and number of free-space laser pulses applied to the GST, we characterize the strong broadband attenuation and optical phase modulation effects of the platform, and perform quasi-continuous tuning enabled by thermo-optically-induced phase changes. As a result, a non-volatile optical switch with a high extinction ratio, as large as 33 dB, is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material

Hanyu Zhang, Linjie Zhou, Jian Xu, Liangjun Lu, Jianping Chen, and B. M. A. Rahman
Opt. Lett. 43(22) 5539-5542 (2018)

Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]

Carlos Rios, Matthias Stegmaier, Zengguang Cheng, Nathan Youngblood, C. David Wright, Wolfram H. P. Pernice, and Harish Bhaskaran
Opt. Mater. Express 8(9) 2455-2470 (2018)

Hybrid phase-change plasmonic crystals for active tuning of lattice resonances

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk'yanchuk, S. A. Maier, and M. H. Hong
Opt. Express 21(11) 13691-13698 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  3. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
    [Crossref] [PubMed]
  4. Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
    [Crossref]
  5. J. Capmany, I. Gasulla, and D. Perez, “Microwave photonics: The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
    [Crossref]
  6. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [Crossref] [PubMed]
  7. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
    [Crossref] [PubMed]
  8. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
    [Crossref] [PubMed]
  9. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
    [Crossref] [PubMed]
  10. L. H. Yu, Y. L. Yin, Y. C. Shi, D. X. Dai, and S. L. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159–166 (2016).
    [Crossref]
  11. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
    [Crossref]
  12. D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
    [Crossref] [PubMed]
  13. M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
    [Crossref]
  14. T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
    [Crossref]
  15. M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
    [Crossref]
  16. H. B. Liang, R. Soref, J. W. Mu, A. Majumdar, X. Li, and W. P. Huang, “Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a Ge2Sb2Te5 Self-Holding Layer,” J. Lightwave Technol. 33(9), 1805–1813 (2015).
    [Crossref]
  17. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
    [Crossref] [PubMed]
  18. K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
    [Crossref]
  19. Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
    [Crossref]
  20. W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
    [Crossref]
  21. C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
    [Crossref] [PubMed]
  22. C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  23. Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
    [Crossref] [PubMed]
  24. J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
    [Crossref] [PubMed]
  25. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon Nanotube Electrodes,” Science 332(6029), 568–570 (2011).
    [Crossref] [PubMed]
  26. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
    [Crossref] [PubMed]
  27. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref] [PubMed]
  28. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  29. H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
    [Crossref]
  30. S. Raoux and M. Wuttig, Phase Change Materials: Science and Applications (Springer, 2009).
  31. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
    [Crossref] [PubMed]
  32. S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
    [Crossref]
  33. S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
    [Crossref]
  34. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [Crossref] [PubMed]
  35. M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
    [Crossref]
  36. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  37. Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
    [Crossref]
  38. G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
    [Crossref]
  39. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  40. C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
    [Crossref] [PubMed]

2018 (2)

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref] [PubMed]

2017 (7)

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

2016 (3)

J. Capmany, I. Gasulla, and D. Perez, “Microwave photonics: The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

L. H. Yu, Y. L. Yin, Y. C. Shi, D. X. Dai, and S. L. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159–166 (2016).
[Crossref]

2015 (4)

H. B. Liang, R. Soref, J. W. Mu, A. Majumdar, X. Li, and W. P. Huang, “Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a Ge2Sb2Te5 Self-Holding Layer,” J. Lightwave Technol. 33(9), 1805–1813 (2015).
[Crossref]

G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

2014 (4)

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

2013 (1)

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

2012 (5)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
[Crossref] [PubMed]

2011 (3)

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon Nanotube Electrodes,” Science 332(6029), 568–570 (2011).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
[Crossref]

2010 (4)

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

2009 (1)

2008 (2)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

2007 (1)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

2004 (1)

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Almeida, V. R.

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Asghari, M.

Asheghi, M.

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Assefa, S.

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Aziz, M. M.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Baehr-Jones, T.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bhaskaran, H.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bojko, R.

Breitwisch, M. J.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Burr, G. W.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Cao, W.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Capmany, J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

J. Capmany, I. Gasulla, and D. Perez, “Microwave photonics: The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

Chen, S. H.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Chen, Y. C.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Cheng, Z.

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Chrostowski, L.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Crudgington, L.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Czaplewski, D. A.

G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

Dai, D. X.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Englund, D.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Estrada, D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon Nanotube Electrodes,” Science 332(6029), 568–570 (2011).
[Crossref] [PubMed]

Feldmann, J.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Feng, D.

Feng, N. N.

Flueckiger, J.

Gasulla, I.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

J. Capmany, I. Gasulla, and D. Perez, “Microwave photonics: The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Goodson, K. E.

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Green, W. M. J.

Gruhler, N.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Gu, T.

Guo, Y. N.

Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
[Crossref]

Harris, N. C.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

He, S. L.

Hicken, R. J.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Hochberg, M.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Hosseini, P.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Hu, J.

Huang, W. P.

Ikuma, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

Jaeger, N. A. F.

Jain, P.

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

Jung, I. W.

G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

Kato, K.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Kawashima, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

Khokhar, A. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Kim, S.

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Kintaka, K.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

Kohary, K. I.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Krebs, D.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Kuwahara, M.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

Lam, C. H.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Larochelle, H.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Li, D. W.

Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
[Crossref]

Li, J.

Li, K.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Li, X.

Liang, H.

Liang, H. B.

Liang, J. L.

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Liao, A. D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon Nanotube Electrodes,” Science 332(6029), 568–570 (2011).
[Crossref] [PubMed]

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lipson, M.

Liu, K.

Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
[Crossref]

Liu, Y.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Lung, H. L.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Majumdar, A.

Mashanovich, G. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Moriyama, T.

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Mu, J. W.

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Osmond, J.

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Pan, S.

Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Pello, J.

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Perez, D.

J. Capmany, I. Gasulla, and D. Perez, “Microwave photonics: The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

Pérez, D.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Pernice, W. H. P.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Pop, E.

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon Nanotube Electrodes,” Science 332(6029), 568–570 (2011).
[Crossref] [PubMed]

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Prabhu, M.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Pruneri, V.

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Qian, W.

Qiu, C.

Rajendran, B.

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Raoux, S.

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Reifenberg, J. P.

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Rettner, C. T.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Rios, C.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Ríos, C.

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Roelkens, G.

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Rude, M.

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Salinga, M.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Scherer, T.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shafiiha, R.

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Shelby, R. M.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

Shen, Y. C.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Shi, W.

Shi, Y. C.

Shoji, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Simpson, R. E.

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Skirlo, S.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Soljacic, M.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Soref, R.

Stanev, T. K.

G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

Stegmaier, M.

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Stern, N. P.

G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, X.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Tanaka, D.

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Thomson, D. J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Toyosaki, T.

Tsuda, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

Tsuruoka, T.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Van Campenhout, J.

van der Tol, J. J. G. M.

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vlasov, Y. A.

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Wang, D.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Wang, X.

Wang, X. M.

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

Wang, Y.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Wei, G. H.

G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wong, H. S. P.

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Wright, C. D.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Wu, Y.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Wu, Y. K.

Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
[Crossref]

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

Xiong, F.

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon Nanotube Electrodes,” Science 332(6029), 568–570 (2011).
[Crossref] [PubMed]

Xu, P.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Xu, Q.

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

Yang, L.

Ye, X.

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Yin, Y. L.

Yu, L. H.

Yu, Z.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Yun, H.

Zhang, Q.

Zhang, W.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Zhang, Y.

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Zhao, S. J.

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Zheng, J.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

Zheng, X.

ACS Photonics (1)

M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Adv. Mater. (2)

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

Appl. Phys. Express (1)

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Appl. Phys. Lett. (3)

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

Appl. Surf. Sci. (1)

Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).
[Crossref]

Electron. Lett. (1)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–1461 (2010).
[Crossref]

IBM J. Res. Develop. (1)

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. Develop. 52(4–5), 465–479 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).
[Crossref]

IEICE Electron. Express (1)

T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE Electron. Express 11(15), 20140538 (2014).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

MRS Bull. (1)

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

Nat. Commun. (2)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Nat. Mater. (2)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Nat. Photonics (5)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

J. Capmany, I. Gasulla, and D. Perez, “Microwave photonics: The programmable processor,” Nat. Photonics 10(1), 6–8 (2016).
[Crossref]

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Proc. IEEE (1)

H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Sci. Adv. (1)

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Science (2)

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon Nanotube Electrodes,” Science 332(6029), 568–570 (2011).
[Crossref] [PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Other (2)

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).

S. Raoux and M. Wuttig, Phase Change Materials: Science and Applications (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 GST-on-silicon hybrid nanophotonic integrated circuits (nano-PICs). (a) Schematic of the platform. Inset: cross-section of the hybrid waveguide. To emphasize the gap between the waveguide and the ring, the schematic is not in scale. (b), (c) Fundamental quasi-transversal electric (TE) mode profiles (normalized amplitude profiles of the electric field) of the hybrid waveguide at 1550 nm for (b) aGST with neff = 2.62 − 0.0024i and (c) cGST with neff = 2.97 − 0.22i. Both were simulated with frequency-domain FEM using the optical constants of GST and ITO measured by ellipsometry. (d) SEM of a microring with 5 μm as-deposited GST. (e) AFM height map of the region highlighted by the yellow dashed rectangle in (d).
Fig. 2
Fig. 2 GST characterization. (a) complex refractive index of aGST and cGST as a function of wavelength. (b) XRD data of aGST and cGST. The curve of cGST is offset vertically for clarity.
Fig. 3
Fig. 3 Transmission measurement of the microrings with GST. (a) Representative output spectra of microrings with different lengths of GST, in both the amorphous and crystalline states. For each length of GST, the cGST and aGST spectra are in scale, while each set of spectra for a different length of GST is offset vertically for clarity. (b), (c) Microscope images of a microring with 5 μm (b) aGST and (c) cGST.
Fig. 4
Fig. 4 Characterization of the GST-on-silicon platform using microring resonators. (a) Lorentzian fitting of the spectrum for the resonant dips in a ring with Q ~11,000 near 1550 nm. (b), (c) GST length dependent (b) loss and (c) spectral shift of the microrings for aGST and cGST with respect to those of the intrinsic microrings. Every dot represents a single device. (d), (e) Wavelength dependent (d) attenuation coefficient and (e) resonance shift per unit GST length for aGST and cGST with respect to the reference (before GST deposition) (dots: experiment data, dotted lines: linear fitting, solid lines: simulation).
Fig. 5
Fig. 5 Determination of GST phase transition conditions by an optical heating setup. (a) Schematic of the optical imaging system (PCX Lens: plano-convex lens). (b) Schematic of the optical pumping system. (c) Induced attenuation coefficient as a function of the fluence of a single laser pulse (white, blue, and red dots denote devices that retained the crystalline state, had intermediate states of GST, and had damaged GST, respectively). Inset: the green Gaussian pulse denotes that only a single pulse was used for this experiment. (d) Sample output spectra of a microring with 4 μm GST in the determined set and reset conditions.
Fig. 6
Fig. 6 Quasi-continuous tuning of the GST-on-silicon hybrid nano-PICs. (a) Output spectra of a microring with 2 μm GST under different number of excitations, where “excitation” denotes a packet of 25 consecutive pulses applied at 50 kHz repetition rate. (b) A zoom-in inspection of the region highlighted by the grey dashed rectangle in the spectra in (a). (c) Attenuation coefficient of the hybrid waveguide as a function of the number of excitations. Inset: the green Gaussian pulse with “×25” denote the excitation process.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Loss=αL+ α 0 2πR 2π n g λ 0 ( 1 Q 1 Q 0 )= 2π λ 0 FSR ( 1 Q 1 Q 0 ),
Δλ L Δ n eff λ 0 2πR n eff0 ,

Metrics