Abstract

The properties of Shapal Hi-M Soft, an aluminum nitride based ceramic, as a material for THz optical components are investigated and compared with other ceramic materials. Shapal is a low-cost and machinable ceramic with a high-refractive index and low losses at THz frequencies: n = 2.65, α = 0.4 cm−1. To demonstrate the shaping capabilities, a Fresnel lens is fabricated with a micro-milling system. Additionally, a prism as an example of a bulk component is demonstrated. Both a THz time domain spectrometer and a vector network analyzer (0.75–1.1 THz) are used for the optical characterization and the absorption coefficient is precisely obtained in the VNA frequency range.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Overview of transparent optical ceramics for high-energy lasers at NRL

Woohong Kim, Guillermo Villalobos, Colin Baker, Jesse Frantz, Brandon Shaw, Shyam Bayya, Steven Bowman, Bryan Sadowski, Michael Hunt, Benjamin Rock, Ishwar Aggarwal, and Jasbinder Sanghera
Appl. Opt. 54(31) F210-F221 (2015)

Optical properties of aluminum nitride single crystals in the THz region

Aleksej Majkić, Uroš Puc, Alexander Franke, Ronny Kirste, Ramón Collazo, Zlatko Sitar, and Marko Zgonik
Opt. Mater. Express 5(10) 2106-2111 (2015)

Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range

Claudia Brückner, Thomas Käsebier, Boris Pradarutti, Stefan Riehemann, Gunther Notni, Ernst-Bernhard Kley, and Andreas Tünnermann
Opt. Express 17(5) 3063-3077 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. B 7(10), 2006–2015 (1990).
    [Crossref]
  2. B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13(1), 113–120 (2004).
    [Crossref]
  3. D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
    [Crossref]
  4. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 10(7), 1738–1749 (2000).
  5. E. D. Walsby, S. M. Durbin, D. R. S. Cumming, and R. J. Blaikie, “Analysis of silicon terahertz diffractive optics,” Curr. Appl. Phys. 4(2-4), 102–105 (2004).
    [Crossref]
  6. S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
    [Crossref]
  7. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
    [Crossref]
  8. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
    [Crossref] [PubMed]
  9. M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater. 31(11), 1575–1577 (2009).
    [Crossref]
  10. K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).
  11. P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
    [Crossref]
  12. J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).
  13. M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi, A Appl. Res. 183, 439 (2001).
    [Crossref]
  14. D. Y. Smith, E. Shiles, and M. Inokuti, Handbook of Optical Constants of Solids (Chestnut Hill, 1998), pp. 306–406.
  15. Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Yu. M. Andreev, D. M. Ezhov, and V. A. Svetlichnyi, “Optical properties of vanadium and nitrogen doped 4H and 6H-SiC,” in IEEE Proc. of 18th Int.Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices EDM (2017).
    [Crossref]
  16. M. Naftaly, J. F. Molloy, B. Magnusson, Y. M. Andreev, and G. V. Lanskii, “Silicon carbide-a high-transparency nonlinear material for THz applications,” Opt. Express 24(3), 2590–2595 (2016).
    [Crossref] [PubMed]
  17. J. Hammler, A. J. Gallant, and C. Balocco, “Free-space permittivity measurement at terahertz frequencies with a vector network analyser,” IEEE Trans. Terahertz Sci. Technol. 6(6), 817–823 (2016).
    [Crossref]
  18. M. Naftaly, “An international intercomparison of THz time-domain spectrometers,” in 41st IRMMW-THz Conference (2016).
    [Crossref]
  19. Precision Ceramics, “Machinable ceramic - chemical composition and thermal conductivity of shapal-m machinable ceramic from precision ceramics”, datasheet (2008).
  20. Precision Ceramics, “Macor - A Unique Material”, datasheet (2016).
  21. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
    [Crossref] [PubMed]
  22. E. Hecht, Optics, 2nd ed. (Addison Wesley, 1987).

2016 (2)

M. Naftaly, J. F. Molloy, B. Magnusson, Y. M. Andreev, and G. V. Lanskii, “Silicon carbide-a high-transparency nonlinear material for THz applications,” Opt. Express 24(3), 2590–2595 (2016).
[Crossref] [PubMed]

J. Hammler, A. J. Gallant, and C. Balocco, “Free-space permittivity measurement at terahertz frequencies with a vector network analyser,” IEEE Trans. Terahertz Sci. Technol. 6(6), 817–823 (2016).
[Crossref]

2015 (1)

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

2013 (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

2011 (2)

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[Crossref] [PubMed]

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

2009 (1)

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater. 31(11), 1575–1577 (2009).
[Crossref]

2008 (2)

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
[Crossref] [PubMed]

2006 (1)

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

2005 (1)

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

2004 (2)

B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13(1), 113–120 (2004).
[Crossref]

E. D. Walsby, S. M. Durbin, D. R. S. Cumming, and R. J. Blaikie, “Analysis of silicon terahertz diffractive optics,” Curr. Appl. Phys. 4(2-4), 102–105 (2004).
[Crossref]

2001 (1)

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi, A Appl. Res. 183, 439 (2001).
[Crossref]

2000 (1)

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 10(7), 1738–1749 (2000).

1990 (1)

D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. B 7(10), 2006–2015 (1990).
[Crossref]

Andreev, Y. M.

Arenas, D.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Asmontas, S.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Balakauskas, S.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Balocco, C.

J. Hammler, A. J. Gallant, and C. Balocco, “Free-space permittivity measurement at terahertz frequencies with a vector network analyser,” IEEE Trans. Terahertz Sci. Technol. 6(6), 817–823 (2016).
[Crossref]

Blaikie, R. J.

E. D. Walsby, S. M. Durbin, D. R. S. Cumming, and R. J. Blaikie, “Analysis of silicon terahertz diffractive optics,” Curr. Appl. Phys. 4(2-4), 102–105 (2004).
[Crossref]

Breese, M. B. H.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Chatterjee, S.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

Cumming, D. R. S.

E. D. Walsby, S. M. Durbin, D. R. S. Cumming, and R. J. Blaikie, “Analysis of silicon terahertz diffractive optics,” Curr. Appl. Phys. 4(2-4), 102–105 (2004).
[Crossref]

Donnan, R.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Durbin, S. M.

E. D. Walsby, S. M. Durbin, D. R. S. Cumming, and R. J. Blaikie, “Analysis of silicon terahertz diffractive optics,” Curr. Appl. Phys. 4(2-4), 102–105 (2004).
[Crossref]

Evans, D.

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater. 31(11), 1575–1577 (2009).
[Crossref]

Fattinger, Ch.

D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. B 7(10), 2006–2015 (1990).
[Crossref]

Fernández-Domínguez, A. I.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Filipovic, D. F.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 10(7), 1738–1749 (2000).

Fischer, B. M.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

Gallant, A. J.

J. Hammler, A. J. Gallant, and C. Balocco, “Free-space permittivity measurement at terahertz frequencies with a vector network analyser,” IEEE Trans. Terahertz Sci. Technol. 6(6), 817–823 (2016).
[Crossref]

Gallot, G.

Gearhart, S. S.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 10(7), 1738–1749 (2000).

Ghodssi, R.

B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13(1), 113–120 (2004).
[Crossref]

Greenslade, P. J.

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater. 31(11), 1575–1577 (2009).
[Crossref]

Grischowsky, D.

D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. B 7(10), 2006–2015 (1990).
[Crossref]

Gunde, M. K.

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi, A Appl. Res. 183, 439 (2001).
[Crossref]

Hammler, J.

J. Hammler, A. J. Gallant, and C. Balocco, “Free-space permittivity measurement at terahertz frequencies with a vector network analyser,” IEEE Trans. Terahertz Sci. Technol. 6(6), 817–823 (2016).
[Crossref]

Hanham, S. M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hong, M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Huang, J. B.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Jansena, C.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

Jördens, C.

Junga, T.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

Kamba, S.

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

Kasalynas, I.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Keiding, S.

D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. B 7(10), 2006–2015 (1990).
[Crossref]

Klein, N.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Koch, M.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[Crossref] [PubMed]

Kohler, K.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Kraft, D.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

Krizmanic, J.

B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13(1), 113–120 (2004).
[Crossref]

Lanagan, M.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Lanskii, G. V.

Liew, Y. F.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Linfield, E. H.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Lisauskas, A.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Macek, M.

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi, A Appl. Res. 183, 439 (2001).
[Crossref]

Magnusson, B.

Maier, S. A.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Martunas, Z.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Miles, R. E.

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater. 31(11), 1575–1577 (2009).
[Crossref]

Mittra, R.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Molloy, J. F.

Morgan, B.

B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13(1), 113–120 (2004).
[Crossref]

Naftaly, M.

M. Naftaly, J. F. Molloy, B. Magnusson, Y. M. Andreev, and G. V. Lanskii, “Silicon carbide-a high-transparency nonlinear material for THz applications,” Opt. Express 24(3), 2590–2595 (2016).
[Crossref] [PubMed]

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater. 31(11), 1575–1577 (2009).
[Crossref]

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Ng, B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Nino, J. C.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Petzelt, J.

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

Podzorov, A.

Rajab, K. Z.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Rebeiz, G. M.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 10(7), 1738–1749 (2000).

Reece, M. J.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Reutera, M.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

Roskos, H. G.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Samoukhina, P.

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

Santhi, S.

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

Scherger, B.

Seliuta, D.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Suvorov, D.

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

Tamosiunas, V.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

Tanner, D.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

Valant, M.

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

Valusis, G.

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

van Exter, M.

D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. B 7(10), 2006–2015 (1990).
[Crossref]

Viola, G.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Waits, C. M.

B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13(1), 113–120 (2004).
[Crossref]

Walsby, E. D.

E. D. Walsby, S. M. Durbin, D. R. S. Cumming, and R. J. Blaikie, “Analysis of silicon terahertz diffractive optics,” Curr. Appl. Phys. 4(2-4), 102–105 (2004).
[Crossref]

Wietzke, S.

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

Wu, J.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Xiong, Z. X.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Xue, H.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Yan, H. X.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Yang, B.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Yu, C. Y.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Zhang, G. F.

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Adv. Opt. Mater. (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Appl. Opt. (1)

Curr. Appl. Phys. (1)

E. D. Walsby, S. M. Durbin, D. R. S. Cumming, and R. J. Blaikie, “Analysis of silicon terahertz diffractive optics,” Curr. Appl. Phys. 4(2-4), 102–105 (2004).
[Crossref]

Electron. Lett. (1)

D. Seliuta, I. Kasalynas, V. Tamosiunas, S. Balakauskas, Z. Martunas, S. Asmontas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature,” Electron. Lett. 42(14), 825 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 10(7), 1738–1749 (2000).

IEEE Trans. Terahertz Sci. Technol. (1)

J. Hammler, A. J. Gallant, and C. Balocco, “Free-space permittivity measurement at terahertz frequencies with a vector network analyser,” IEEE Trans. Terahertz Sci. Technol. 6(6), 817–823 (2016).
[Crossref]

J. Eur. Ceram. Soc. (1)

P. Samoukhina, S. Kamba, S. Santhi, J. Petzelt, M. Valant, and D. Suvorov, “Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics,” J. Eur. Ceram. Soc. 25(12), 3085–3088 (2005).
[Crossref]

J. Micro. And Elect. Pack. (1)

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband dielectric characterization of aluminum oxide (Al2O3),” J. Micro. And Elect. Pack. 5, 101–106 (2008).

J. Microelectromech. Syst. (1)

B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13(1), 113–120 (2004).
[Crossref]

J. Mol. Struct. (1)

S. Wietzke, C. Jansena, M. Reutera, T. Junga, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1-3), 41–51 (2011).
[Crossref]

J. Opt. Soc. B (1)

D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. B 7(10), 2006–2015 (1990).
[Crossref]

Mater. Lett. (1)

J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett. 136(1), 225–227 (2015).

Opt. Express (2)

Opt. Mater. (1)

M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater. 31(11), 1575–1577 (2009).
[Crossref]

Phys. Status Solidi, A Appl. Res. (1)

M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi, A Appl. Res. 183, 439 (2001).
[Crossref]

Other (6)

D. Y. Smith, E. Shiles, and M. Inokuti, Handbook of Optical Constants of Solids (Chestnut Hill, 1998), pp. 306–406.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Yu. M. Andreev, D. M. Ezhov, and V. A. Svetlichnyi, “Optical properties of vanadium and nitrogen doped 4H and 6H-SiC,” in IEEE Proc. of 18th Int.Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices EDM (2017).
[Crossref]

M. Naftaly, “An international intercomparison of THz time-domain spectrometers,” in 41st IRMMW-THz Conference (2016).
[Crossref]

Precision Ceramics, “Machinable ceramic - chemical composition and thermal conductivity of shapal-m machinable ceramic from precision ceramics”, datasheet (2008).

Precision Ceramics, “Macor - A Unique Material”, datasheet (2016).

E. Hecht, Optics, 2nd ed. (Addison Wesley, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 THz transmission of the ceramics listed in Table 1. Both Macor and CeramSil exhibit very high losses in this region, and there is no measurable transmission through silicon carbide Shapal and CeramAlOx both exhibit low absorption in the frequency range around 1 THz. Sample thickness for all materials was 2.54 mm.
Fig. 2
Fig. 2 Left: Signal attenuation at three different frequencies, plotted against material thickness allows extraction of the attenuation coefficient, shown at Top Right, from exponential fit lines. Bottom Right: The broadband THz-Time-Domain Spectroscopy scan shows little attenuation to well beyond 1 THz.
Fig. 3
Fig. 3 Left: FDTD simulation shows that the THz radiation, coming from the right, propagates along the z-axis and is focused at the bottom of the structure on the left. Right: A planar slice of the electric field intensity 50 µm below the surface shows a −3 dB focal spot width of 190 µm.
Fig. 4
Fig. 4 Scanning electron micrograph of a prototype Shapal Hi-M Soft Fresnel lens.
Fig. 5
Fig. 5 a) The measured intensity in the xy-plane, 1.2 mm below the lens’ back face. b) Zoom into the center shows a −3 dB focal spot size of around 200 µm in width.
Fig. 6
Fig. 6 Left: Micrograph from an array of holes on a hexagonal lattice suitable for use as a THz photonic crystal. The thin sidewalls with no cracks on the surface show the high packing density required for photonic crystals, is possible. Right: Zoomed micrograph on the second hole from the right. The smooth sidewalls show the grain structure of the material and no machining marks are visible, proving the surface finish is of suitable quality for THz photonic components.
Fig. 7
Fig. 7 Schematic of the measured dispersion of the prism with the different refraction angles for 0.78 THz (red), 0.92 THz (green) and 1.07 THz (purple) indicated. The overall measured deflection through dispersion in the frequency range is very low with only 1.3° difference.

Tables (2)

Tables Icon

Table 1 Composition and material properties of the ceramic materials under test and other ceramics and THz optical materials from literature.

Tables Icon

Table 2 Machining operations for Fresnel lens prototyping. The machine uses a spindle speed of 40,000 RPM, a feed rate of 30 mm/min and has a compressed air/low viscosity mineral oil/WD-40 mist as coolant.

Metrics