Abstract

This work numerically investigates a localized terahertz (THz) slow light phenomenon by tuning the spoof localized surface plasmon-induced transparency (PIT). A binary meta-molecule supports the interaction of the spoof localized surface plasmon (spoof-LSP), which is composed of a metallic arc and a textured circular cavity of periodic grooves. By tuning the central angle θ of the arc from 90 degrees to 170 degrees, a slow light plateau is found in the transparency window at certain frequency range. A maximum of 46 ps group delay is achieved at the θ of 135. The numerical mapping of the electromagnetic field indicates a new-born dipolar spoof-LSP that appears at the transparency windows on the circular cavity with opposite polarity to the spoof-LSP on the metallic arc. These two spoof-LSPs of opposite direction lead to a fake quadrupole, which will repel each other in magnetic dipole momentum. The slow light achieves maximum with the induced spoof-LSP and is the same as the origin spoof-LSP on the metallic arc in oscillation strength. This work paves a new way for the maximization of THz slow light.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows

Zhenyu Zhao, Hui Zhao, Rajour Tanyi Ako, Jianbing Zhang, Hongwei Zhao, and Sharath Sriram
Opt. Express 27(19) 26459-26470 (2019)

Dual terahertz slow light plateaus in bilayer asymmetric metasurfaces

Zhenyu Zhao, Zhidong Gu, Hui Zhao, and Wangzhou Shi
Opt. Mater. Express 9(4) 1608-1619 (2019)

Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators

Zhenyu Zhao, Xiaobo Zheng, Wei Peng, Hongwei Zhao, Jianbing Zhang, Zhijian Luo, and Wangzhou Shi
Opt. Mater. Express 7(6) 1950-1961 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358(6361), eaan5196 (2017).
    [Crossref] [PubMed]
  2. L. Shen, X. Zheng, and X. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23(9), 11790–11798 (2015).
    [Crossref] [PubMed]
  3. K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
    [Crossref] [PubMed]
  4. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
    [Crossref] [PubMed]
  5. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
    [Crossref]
  6. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
  7. S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
    [Crossref] [PubMed]
  8. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref]
  9. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  10. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref]
  11. W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]
  12. M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
    [Crossref]
  13. H. Merbold, A. Bitzer, and T. Feurer, “Near-field investigation of induced transparency in similarly oriented double split-ring resonators,” Opt. Lett. 36(9), 1683–1685 (2011).
    [Crossref] [PubMed]
  14. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  15. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
    [Crossref]
  16. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  17. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [Crossref] [PubMed]
  18. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  19. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref]
  20. Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
    [Crossref] [PubMed]
  21. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
    [Crossref] [PubMed]
  22. X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
    [Crossref]
  23. Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
    [Crossref]
  24. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  25. S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
    [Crossref] [PubMed]
  26. Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
    [Crossref] [PubMed]
  27. Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
    [Crossref]
  28. S. A. Maier, Plasmonics: Fundamentals and Applications: Fundamentals and Applications (Springer Science & Business Media, 2007).
  29. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  30. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  31. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  32. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  33. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
    [Crossref] [PubMed]
  34. Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
    [Crossref] [PubMed]
  35. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
    [Crossref] [PubMed]
  36. Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Rep. 6(1), 24447 (2016).
    [Crossref] [PubMed]
  37. Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
    [Crossref] [PubMed]
  38. Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
    [Crossref] [PubMed]
  39. F. Ulaby, Fundamentals of Applied Electromagnetics, 5th ed. (Prentice Hall, 2007).
  40. X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
    [Crossref]

2017 (6)

K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358(6361), eaan5196 (2017).
[Crossref] [PubMed]

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
[Crossref] [PubMed]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
[Crossref] [PubMed]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

2016 (5)

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Rep. 6(1), 24447 (2016).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

2015 (6)

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

L. Shen, X. Zheng, and X. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23(9), 11790–11798 (2015).
[Crossref] [PubMed]

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

2013 (4)

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

2012 (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

2011 (4)

2010 (2)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).

2009 (2)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

2008 (4)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2005 (1)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Altug, H.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Bitzer, A.

Boyd, R. W.

K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358(6361), eaan5196 (2017).
[Crossref] [PubMed]

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Cao, W.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Chen, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Chen, L.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Chen, S.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Cheng, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Cook, J. J. H.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).

Cui, T.-J.

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Deng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

L. Shen, X. Zheng, and X. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23(9), 11790–11798 (2015).
[Crossref] [PubMed]

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Duan, X.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Feurer, T.

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gao, F.

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Rep. 6(1), 24447 (2016).
[Crossref] [PubMed]

Gao, Z.

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Rep. 6(1), 24447 (2016).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Gu, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Gu, J.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Hamm, J. M.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).

Han, J.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Hess, O.

K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358(6361), eaan5196 (2017).
[Crossref] [PubMed]

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hokmabadi, M. P.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Huang, R.

Jenkins, S. D.

S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
[Crossref] [PubMed]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Jiang, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Jin, B.

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

Kim, S. M.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Kung, P.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Li, C.

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

Li, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Li, Q.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Li, Z.

Liao, Z.

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Liu, L.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, S.

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

Liu, W.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Liu, Y.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Luo, Y.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Luo, Z.

Ma, H. F.

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

Ma, Y.

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Merbold, H.

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Ouyang, C.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Papasimakis, N.

S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
[Crossref] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Peng, W.

Philip, E.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Prosrirnin, S. L.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Rivera, E.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Ruostekoski, J.

S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
[Crossref] [PubMed]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Savo, S.

S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
[Crossref] [PubMed]

Schulz, S. A.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Shen, L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

L. Shen, X. Zheng, and X. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23(9), 11790–11798 (2015).
[Crossref] [PubMed]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Shi, W.

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

Singh, R.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Song, Y.

Song, Z.

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Tian, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Tian, Z.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Tonouchi, M.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Tsai, D. P.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358(6361), eaan5196 (2017).
[Crossref] [PubMed]

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).

Upham, J.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Vakakis, A. F.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

Wan, M.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Wartak, M. S.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Xiao, Q. X.

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Xu, B.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Xu, J.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Xu, Q.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Xu, Y.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Yang, B. J.

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Yang, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Yang, X.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Yang, Y.

Yue, W.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Zang, X.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zayats, A. V.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Zhang, B.

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Rep. 6(1), 24447 (2016).
[Crossref] [PubMed]

Zhang, C.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, J.

Zhang, L.

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Zhang, S.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Zhang, X.

K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358(6361), eaan5196 (2017).
[Crossref] [PubMed]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhao, H.

Zhao, Z.

Zheludev, N. I.

S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
[Crossref] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Zheng, X.

Zhou, F.

Zhou, Y.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Zhou, Y. J.

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Zhu, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosrirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (4)

Phys. Rev. B (1)

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).

Phys. Rev. Lett. (7)

S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I. Zheludev, “Many-body subradiant excitation in metamaterial array: Experiment and theory,” Phys. Rev. Lett. 119(5), 053901 (2017).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Sci. Rep. (7)

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T.-J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Rep. 6(1), 24447 (2016).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin, and T.-J. Cui, “Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies,” Sci. Rep. 6(1), 27596 (2016).
[Crossref] [PubMed]

Sci.Adv. (1)

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci.Adv. 2,e1501142 (2015).
[Crossref]

Science (5)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358(6361), eaan5196 (2017).
[Crossref] [PubMed]

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications: Fundamentals and Applications (Springer Science & Business Media, 2007).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

F. Ulaby, Fundamentals of Applied Electromagnetics, 5th ed. (Prentice Hall, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of one unit cell of proposed binary MM, in which p = 420 μm, r = 90 μm, w = 4 μm, h = 60 μm, g = 15 μm, respectively. l is the length of metallic arc. KTHz refers to the wavevector of incident THz pulse. ETHz and HTHz refer to the electrical components and magnetic components respectively.
Fig. 2
Fig. 2 (a) The THz transmittance of MMs with varied central angles from 90 degree to 170 degree at the interval of 20 degree. (b) The 2D THz transmittance as a function of frequency versus different central angles of metallic arc. The step is 2 degree.
Fig. 3
Fig. 3 (a) The phase spectra and (b) the group delay of MMs with varied central angles from 90 degree to 170 degree at the interval of 20 degree. (b) The two-dimensional diagram of group delay as a function of frequency and central angle. The step is 2 degree.
Fig. 4
Fig. 4 The product of the group delay time and bandwidth at transparency windows of our MMs with the central angle of metallic arc at 90, 110, 130, 150, and 170 degree, respectively.
Fig. 5
Fig. 5 Electrical field distribution of side-modes and THz transparency window of MMs at 90 degree, 135 degree, 170 degree, correspondingly. The νT, νL and νH refer to the transparent window, low-frequency side-modes and high frequency side-modes respectively. The color bar refers to the polarity as well as the relative strength of electrical field. Crosshatching means no data.

Tables (1)

Tables Icon

Table 1 The mode frequency of basic resonators

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δτ= dφ 2πdν ,
Δν= ν H ν L ,
ψ= B( x,y )dxdy,
U= dψ dt = l/2 +l/2 E arc ds .

Metrics