Abstract

We introduce and develop a new class of compact and small wideband metamaterial perfect absorber (MPA) by enhancing the active role of the metallic ground plate in the common sandwiched structures. The incoming energy of electromagnetic (EM) waves is expected to perfectly consume in the microwave band, where the optimized MPA has a thickness of only λ/82 at the smallest working wavelength. Our MPA offers a good absorption over 90% in the wide bandwidth (from 5.4 to 9.1 GHz). A simplified equivalent-circuit model and experiment are used to explain and to confirm the performance of proposed MPA in the defined band. This MPA also satisfies the practical features of omni-directionality (incident angle up to 50°) and polarization independence of the EM wave.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide

Jin Huang, Jining Li, Yue Yang, Jie Li, Jiahui li, Yating Zhang, and Jianquan Yao
Opt. Express 28(5) 7018-7027 (2020)

Metamaterial perfect absorber based on artificial dielectric “atoms”

Xiaoming Liu, Ke Bi, Bo Li, Qian Zhao, and Ji Zhou
Opt. Express 24(18) 20454-20460 (2016)

Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range

Xu Zhang, Hongqiang Li, Zeyong Wei, and Limei Qi
Opt. Mater. Express 7(9) 3294-3302 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
    [Crossref] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  6. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000).
  7. W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
    [Crossref] [PubMed]
  8. B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
    [Crossref] [PubMed]
  9. S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
    [Crossref]
  10. C. Filippo, M. Agostino, and M. Giuliano, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
    [Crossref]
  11. Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
    [Crossref]
  12. W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
    [Crossref]
  13. W. Wang, K. Wang, Z. Yang, and J. Liu, “Experimental demonstration of an ultraflexible metamaterial absorber and its application in sensing,” J. Phys. D Appl. Phys. 50(13), 135108 (2017).
    [Crossref]
  14. D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
    [Crossref]
  15. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
    [Crossref]
  16. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
    [Crossref]
  17. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  18. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  19. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  20. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  21. Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
    [Crossref]
  22. T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
    [Crossref] [PubMed]
  23. Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
    [Crossref]
  24. B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
    [Crossref]
  25. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 1–6 (2015).
  26. M. Rahmanzadeh, H. Rajabalipanah, and A. Abdolali, “Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers,” Appl. Opt. 57(4), 959–968 (2018).
    [Crossref] [PubMed]
  27. F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
    [Crossref]
  28. Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
    [Crossref]
  29. Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
    [Crossref]
  30. H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
    [Crossref]
  31. D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
    [Crossref]
  32. CST of America, Inc., 492 Old Connecticut Path, Suite 505, Framingham, MA 01701, USA. http://www.cst.com
  33. B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
    [Crossref]
  34. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [Crossref] [PubMed]
  35. N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
    [Crossref]
  36. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
    [Crossref]
  37. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
    [Crossref] [PubMed]
  38. J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
    [Crossref]
  39. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  40. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
    [Crossref]

2018 (3)

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

M. Rahmanzadeh, H. Rajabalipanah, and A. Abdolali, “Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers,” Appl. Opt. 57(4), 959–968 (2018).
[Crossref] [PubMed]

D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
[Crossref]

2017 (7)

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

W. Wang, K. Wang, Z. Yang, and J. Liu, “Experimental demonstration of an ultraflexible metamaterial absorber and its application in sensing,” J. Phys. D Appl. Phys. 50(13), 135108 (2017).
[Crossref]

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

2016 (3)

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

2015 (3)

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 1–6 (2015).

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

2014 (1)

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

2013 (3)

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
[Crossref]

2012 (3)

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
[Crossref]

2011 (3)

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

2010 (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

C. Filippo, M. Agostino, and M. Giuliano, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

2009 (2)

T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
[Crossref] [PubMed]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2007 (1)

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

2006 (2)

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Abdolali, A.

Agostino, M.

C. Filippo, M. Agostino, and M. Giuliano, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Alici, K. B.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Aydin, K.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Bai, S.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Barrett, J. P.

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Bilotti, F.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Brückl, H.

Bui, T. S.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 1–6 (2015).

Chen, L. Y.

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Chen, X. F.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Chen, Y.

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

Chen, Y. T.

Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

Cheong, H.

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Choi, E. H.

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 1–6 (2015).

Cummer, S. A.

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dang, L. H.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Dao, T. D.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Deng, L.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Du, K.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Dung, N. V.

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Economon, E. N.

Fan, X.

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

Filippo, C.

C. Filippo, M. Agostino, and M. Giuliano, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Fischbach, S.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Gansel, J. K.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Geng, J.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giuliano, M.

C. Filippo, M. Agostino, and M. Giuliano, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

Gu, S.

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Hand, T. H.

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Hasan, D.

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

He, C.

Ho, C. P.

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

Hoang, C. V.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Hu, X.

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Hung, T. C.

Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
[Crossref]

Hwang, J. S.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Jang, W. H.

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Jin, R.

Jin, X. R.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, M.

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Khuyen, B. X.

D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
[Crossref]

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Kim, K. W.

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Kim, Y. J.

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Koschny, T.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Lam, V. D.

D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
[Crossref]

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, C.

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

Lee, Y.

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Lee, Y. P.

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Li, J. C.

Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
[Crossref]

Li, J. P.

Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
[Crossref]

Li, Q.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Liang, X.

Liu, J.

W. Wang, K. Wang, Z. Yang, and J. Liu, “Experimental demonstration of an ultraflexible metamaterial absorber and its application in sensing,” J. Phys. D Appl. Phys. 50(13), 135108 (2017).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 1–6 (2015).

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
[Crossref]

Luo, H.

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Luu, D. H.

D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
[Crossref]

Maier, T.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Nabatame, T.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Nagao, T.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Niea, Y.

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

Niesler, F. B. P.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Ohi, A.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Ozbay, E.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Pang, Y. Q.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

Park, J. W.

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pitchappa, P.

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

Popa, B.-I.

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Premaratne, M.

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Qiu, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Qiu, Y.

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Qu, Y.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Rahmanzadeh, M.

Rajabalipanah, H.

Rhee, J. Y.

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Rong-Zhou, G.

F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
[Crossref]

Rukhlenko, I. D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Simons, R. N.

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Tian, J.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Toscano, A.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Tung, B. S.

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
[Crossref]

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Tuong, P. V.

Tuyen, L. D.

D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vegni, L.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Vu, L. D.

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Wang, B.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Wang, J.

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

Wang, K.

W. Wang, K. Wang, Z. Yang, and J. Liu, “Experimental demonstration of an ultraflexible metamaterial absorber and its application in sensing,” J. Phys. D Appl. Phys. 50(13), 135108 (2017).
[Crossref]

Wang, S.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Wang, T.

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

Wang, W.

W. Wang, K. Wang, Z. Yang, and J. Liu, “Experimental demonstration of an ultraflexible metamaterial absorber and its application in sensing,” J. Phys. D Appl. Phys. 50(13), 135108 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Wang, X.

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

Wang, Y.

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wegener, M.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Weng, X.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Wilson, J. D.

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

Xian, W.

F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
[Crossref]

Xiao, F.

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Xiao, J. Q.

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

Xie, J.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Xie, Y.

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

Xiong, X.

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

Yan, N.

F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
[Crossref]

Yang, B.

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

Yang, J. G.

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Yang, Z.

W. Wang, K. Wang, Z. Yang, and J. Liu, “Experimental demonstration of an ultraflexible metamaterial absorber and its application in sensing,” J. Phys. D Appl. Phys. 50(13), 135108 (2017).
[Crossref]

Ye, H.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Yong-Zhi, C.

F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
[Crossref]

Yoo, Y. J.

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Yue-Nong, F.

F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
[Crossref]

Zhang, N.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Zhang, S.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y. Q.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Zhou, J.

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Zhou, P.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Zhou, Y. J.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

Zhu, W.

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

ACS Photonics (1)

D. Hasan, P. Pitchappa, J. Wang, T. Wang, B. Yang, C. P. Ho, and C. Lee, “Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber,” ACS Photonics 4(2), 302–315 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 1–6 (2015).

J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Chin. Phys. B (1)

F. Yue-Nong, C. Yong-Zhi, N. Yan, W. Xian, and G. Rong-Zhou, “An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film,” Chin. Phys. B 22(6), 067801 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

C. Filippo, M. Agostino, and M. Giuliano, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

J. Appl. Phys. (4)

B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, and Y. P. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization,” J. Appl. Phys. 117(24), 243105 (2015).
[Crossref]

Y. Z. Cheng, Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements,” J. Appl. Phys. 111(4), 044902 (2012).
[Crossref]

S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[Crossref]

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

J. Phys. D Appl. Phys. (2)

W. Wang, K. Wang, Z. Yang, and J. Liu, “Experimental demonstration of an ultraflexible metamaterial absorber and its application in sensing,” J. Phys. D Appl. Phys. 50(13), 135108 (2017).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Mod. Phys. Lett. B (1)

B. S. Tung, B. X. Khuyen, Y. J. Yoo, J. Y. Rhee, K. W. Kim, V. D. Lam, and Y. P. Lee, “Reversibly-propagational metamaterial absorber for sensing application,” Mod. Phys. Lett. B 32(04), 1850044 (2018).
[Crossref]

Opt. Commun. (2)

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optik (Stuttg.) (1)

D. H. Luu, B. S. Tung, B. X. Khuyen, L. D. Tuyen, and V. D. Lam, “Multi-band absorption induced by near-field coupling and defects in metamaterial,” Optik (Stuttg.) 156, 811–816 (2018).
[Crossref]

Phys. Rev. B (2)

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (3)

Y. Xie, X. Fan, Y. Chen, J. D. Wilson, R. N. Simons, and J. Q. Xiao, “A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber,” Sci. Rep. 7(1), 40490 (2017).
[Crossref] [PubMed]

B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L. Y. Chen, V. D. Lam, and Y. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band,” Sci. Rep. 7(1), 45151 (2017).
[Crossref] [PubMed]

T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sol. Energy (1)

Y. Liu, Y. T. Chen, J. C. Li, T. C. Hung, and J. P. Li, “Study of energy absorption on solar cell using metamaterials,” Sol. Energy 86(5), 1586–1599 (2012).
[Crossref]

Solid State Commun. (1)

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Other (2)

CST of America, Inc., 492 Old Connecticut Path, Suite 505, Framingham, MA 01701, USA. http://www.cst.com

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Three-dimensional arrangement of the unit cell for wide-band MPA with the polarization of EM wave. (b) Fabricated sample and its magnification for the front and the back layers of 2 × 2 unit cells. (b) Illustrated arrangement for the experimental configuration.
Fig. 2
Fig. 2 (a) Calculated effective impedance of the proposed MPA. (b) Combination of inner-disk and outer-ring structures resulting in wide-band absorption. The orange area shows the frequency band with an absorption over 90% for the proposed MPA. Distributions of the induced surface currents on front and back layers at resonant frequencies for the same unit cell, which contains only (c) outer ring and (d) inner disk.
Fig. 3
Fig. 3 Simulated absorption frequencies according to (a) the radius of low-conductivity disk (ro) and (b) the thickness of FR-4 (t).
Fig. 4
Fig. 4 Performance of the wide-band MPA in wide range of incident angle. (a) Simulated and (b) measured absorption spectra according to the incident angle of EM wave for the TE polarization. (c) Simulated dependence of absorption on the incident angle of EM wave for the TM polarization.
Fig. 5
Fig. 5 (a) Simulated and (b) measured polarization-independent behavior of the wide-band MPA.
Fig. 6
Fig. 6 Simulated polarization-behaviors of the wide-band MPA for incident angles of 20°, 40°, 50° under TE and TM modes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C 1 ε ε 0 c 1 t [ π r 1 2 ],
C 2 πε ε 0 c 2 t [ 2w r 2 w 2 ].
R 1 R 0 L 1 μ 0 , R 2 R 0 L 2 μ 0 ,
BW= f m Q m f m ( 1 Q cm + 1 Q dm ),
Z= (1+ S 11 (ω)) 2 (1 S 11 (ω)) 2 .
FBW= 2( f high f low ) f high + f low .

Metrics