Abstract

A dual-frequency broadband terahertz metamaterial absorber, composed of a periodically ellipse-shaped graphene array placed over a thin SiO2 layer and a lossy polyimide layer backed with a gold ground, is proposed in this article. The numerical simulation results reveal that the effective absorption band (absorption > 0.9) ranges from 0.3 THz to 0.75 THz and 1.57 THz to 1.87 THz, with a favorable independence of incident angle. Furthermore, replacing the gold ground with a frequency selective surface inserted with graphene, another absorbing peak appears between two broad absorbing bands and can be continuously tuned from 1 THz to 1.3 THz by controlling the chemical potential of graphene from 0 eV to 0.5 eV in the FSS. To improve the absorbance of the tunable absorbing peak, a backed cavity is added to the structure, which promotes the absorbance from 0.6 to more than 0.9 with unaffected tunability. These designs overcome limitations of traditional absorbers and have promising applications for filtering, detecting, and sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual broadband absorber based on graphene metamaterial in the terahertz range

Ning Hu, Fengling Wu, Li-an Bian, Hanqing Liu, and Peiguo Liu
Opt. Mater. Express 8(12) 3899-3909 (2018)

Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials

Yan Liu, Renbin Zhong, Jiebiao Huang, Yilin Lv, Chen Han, and Shenggang Liu
Opt. Express 27(5) 7393-7404 (2019)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  2. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  3. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
    [Crossref]
  4. H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).
  5. I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
    [Crossref]
  6. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [Crossref] [PubMed]
  7. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  8. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  9. R. W. Whatmore and R. Watton, “Pyroelectric Materials and devices. infrared detectors and emitters: materials and devices,” Springer US 8, 99–147 (2001).
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  12. H. Zhang, G. Zheng, F. Xian, X. Zou, and J. Wang, “Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating,” Opt. Mater. 72, 476–481 (2017).
    [Crossref]
  13. L. Bian, P. Liu, and G. Li, “Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies,” Superlattices Microstruct. 98, 522–534 (2016).
    [Crossref]
  14. M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
    [Crossref] [PubMed]
  15. X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. Rep. 74(11), 351–376 (2013).
    [Crossref]
  16. H. Liu, P. Liu, L. Bian, C. Liu, and Q. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express 8(4), 3256–3259 (2018).
    [Crossref]
  17. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
    [Crossref]
  18. R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
    [Crossref]
  19. P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
    [Crossref] [PubMed]
  20. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
    [Crossref] [PubMed]
  21. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
    [Crossref]
  22. P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-affine graphene metasurfaces for tunable broadband absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
    [Crossref]
  23. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  24. X. He, X. Zhong, F. Lin, and W. Shi, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331–342 (2016).
    [Crossref]
  25. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  26. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  27. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  28. X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
    [Crossref] [PubMed]
  29. Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
    [Crossref]
  30. G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  31. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  32. Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
    [Crossref] [PubMed]
  33. L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
    [Crossref]
  34. Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
    [Crossref]
  35. Y. Zhang, Y. Shi, and C.-H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
    [Crossref]
  36. G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
    [Crossref]
  37. I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).
  38. L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
    [Crossref]
  39. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  40. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  41. I. Baylam, O. Balci, N. Kakenov, C. Kocabas, and A. Sennaroglu, “Graphene-gold supercapacitor as a voltage controlled saturable absorber for femtosecond pulse generation,” Opt. Lett. 41(5), 910–913 (2016).
    [Crossref] [PubMed]
  42. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  43. J. Roberts, K. L. Ford, and J. M. Rigelsford, “Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces,” IEEE Trans. Antenn. Propag. 64(1), 251–261 (2016).
    [Crossref]
  44. Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
    [Crossref]
  45. A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
    [Crossref]
  46. B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons, 2005).
  47. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).
  48. B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
    [Crossref] [PubMed]

2018 (4)

H. Liu, P. Liu, L. Bian, C. Liu, and Q. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express 8(4), 3256–3259 (2018).
[Crossref]

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
[Crossref]

2017 (4)

2016 (11)

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

X. He, X. Zhong, F. Lin, and W. Shi, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331–342 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

I. Baylam, O. Balci, N. Kakenov, C. Kocabas, and A. Sennaroglu, “Graphene-gold supercapacitor as a voltage controlled saturable absorber for femtosecond pulse generation,” Opt. Lett. 41(5), 910–913 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. Shi, and C.-H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
[Crossref]

X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
[Crossref] [PubMed]

L. Bian, P. Liu, and G. Li, “Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies,” Superlattices Microstruct. 98, 522–534 (2016).
[Crossref]

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-affine graphene metasurfaces for tunable broadband absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
[Crossref]

J. Roberts, K. L. Ford, and J. M. Rigelsford, “Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces,” IEEE Trans. Antenn. Propag. 64(1), 251–261 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

2015 (3)

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

2014 (4)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (6)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

2011 (1)

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

2010 (4)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

2008 (4)

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

2001 (1)

R. W. Whatmore and R. Watton, “Pyroelectric Materials and devices. infrared detectors and emitters: materials and devices,” Springer US 8, 99–147 (2001).

Abbott, D.

A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
[Crossref]

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Alaee, R.

Alarcón, E.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Al-Sarawi, S. F.

A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
[Crossref]

Amin, M.

Andryieuski, A.

Averitt, R. D.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Avouris, P.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Bagci, H.

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

Balci, O.

Bangert, U.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

Baylam, I.

Bian, L.

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

H. Liu, P. Liu, L. Bian, C. Liu, and Q. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express 8(4), 3256–3259 (2018).
[Crossref]

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

L. Bian, P. Liu, and G. Li, “Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies,” Superlattices Microstruct. 98, 522–534 (2016).
[Crossref]

Bingham, C. M.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bleloch, A. L.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Cabellos-Aparicio, A.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

Cai, G.

Cao, W.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chen, G.

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

Chen, H. T.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Chen, J.

Chen, P. Y.

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

Chen, Y.

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Cheng, Q.

Chigrin, D. N.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

Chucai, G.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Cumming, D. R. S.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

de Abajo, F. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Drysdale, T. D.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Ebrahimi, A.

A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
[Crossref]

Fan, K.

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Farhat, M.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Feng, Y.

Fernández-Domínguez, A. I.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Ford, K. L.

J. Roberts, K. L. Ford, and J. M. Rigelsford, “Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces,” IEEE Trans. Antenn. Propag. 64(1), 251–261 (2016).
[Crossref]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Gass, M. H.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

Ge, L.

Geim, A. K.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Grant, J.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Gu, C. Q.

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Guo, E.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Guo, Y.

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Han, D.

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, J.

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

He, X.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hochrein, T.

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Hu, F.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Huang, B. J.

Iwaszczuk, K.

Jansen, C.

Jepsen, P. U.

Ji, J.

Jianfa, Z.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Jiang, T.

Jokerst, N. M.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Jördens, C.

Jornet, J. M.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

Kakenov, N.

Ken, L.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Kocabas, C.

Koch, M.

Kremers, C.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

Krumbholz, N.

Lavrinenko, A. V.

Lederer, F.

Li, G.

L. Bian, P. Liu, and G. Li, “Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies,” Superlattices Microstruct. 98, 522–534 (2016).
[Crossref]

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Li, Z.

Liang, C.-H.

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Lin, F.

Ling, F.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Liu, B.

Liu, C.

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

H. Liu, P. Liu, L. Bian, C. Liu, and Q. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express 8(4), 3256–3259 (2018).
[Crossref]

Liu, H.

H. Liu, P. Liu, L. Bian, C. Liu, and Q. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express 8(4), 3256–3259 (2018).
[Crossref]

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
[Crossref]

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

Liu, N.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, P.

H. Liu, P. Liu, L. Bian, C. Liu, and Q. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express 8(4), 3256–3259 (2018).
[Crossref]

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
[Crossref]

L. Bian, P. Liu, and G. Li, “Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies,” Superlattices Microstruct. 98, 522–534 (2016).
[Crossref]

Liu, Q. H.

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Llatser, I.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

Low, T.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Lu, W.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. Rep. 74(11), 351–376 (2013).
[Crossref]

Luo, C.

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

Luo, Q.

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Luo, X.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. Rep. 74(11), 351–376 (2013).
[Crossref]

Maier, S. A.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

McCrindle, I. J. H.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Nair, R. R.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Ni, Z.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. Rep. 74(11), 351–376 (2013).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Niu, Z. Y.

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Palit, S.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Papasimakis, N.

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-affine graphene metasurfaces for tunable broadband absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Pei, M.

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Peters, O.

Qiu, T.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. Rep. 74(11), 351–376 (2013).
[Crossref]

Rigelsford, J. M.

J. Roberts, K. L. Ford, and J. M. Rigelsford, “Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces,” IEEE Trans. Antenn. Propag. 64(1), 251–261 (2016).
[Crossref]

Roberts, J.

J. Roberts, K. L. Ford, and J. M. Rigelsford, “Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces,” IEEE Trans. Antenn. Propag. 64(1), 251–261 (2016).
[Crossref]

Rockstuhl, C.

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Roy Chowdhury, D.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Salhi, M.

Scheller, M.

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Sennaroglu, A.

Shen, Z.

A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
[Crossref]

Shi, W.

Shi, X.

Shi, Y.

Shiqiao, Q.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Smith, D. R.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Song, Z.

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Strikwerda, A. C.

Sun, X.

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Tang, C.

Tang, H.

Tang, J.

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

Taylor, A. J.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Tsai, D. P.

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-affine graphene metasurfaces for tunable broadband absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Tyler, T.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Vieweg, N.

Wang, J.

H. Zhang, G. Zheng, F. Xian, X. Zou, and J. Wang, “Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating,” Opt. Mater. 72, 476–481 (2017).
[Crossref]

Wang, K.

Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
[Crossref]

Wang, P.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

Wang, Q.

Wang, T.

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

Wang, Y.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Watton, R.

R. W. Whatmore and R. Watton, “Pyroelectric Materials and devices. infrared detectors and emitters: materials and devices,” Springer US 8, 99–147 (2001).

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, X.

Whatmore, R. W.

R. W. Whatmore and R. Watton, “Pyroelectric Materials and devices. infrared detectors and emitters: materials and devices,” Springer US 8, 99–147 (2001).

Wietzke, S.

Withayachumnankul, W.

A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
[Crossref]

Wu, B.

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Wu, P. C.

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-affine graphene metasurfaces for tunable broadband absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Xia, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Xian, F.

H. Zhang, G. Zheng, F. Xian, X. Zou, and J. Wang, “Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating,” Opt. Mater. 72, 476–481 (2017).
[Crossref]

Xiaodong, Y.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Xu, B. Z.

Xu, X.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Xue, H.

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Yang, L.

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Yang, Y.

X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Yao, G.

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

Yao, J.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Ye, L.

Yu, D.

Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
[Crossref]

Yue, J.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Zhang, H.

H. Zhang, G. Zheng, F. Xian, X. Zou, and J. Wang, “Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating,” Opt. Mater. 72, 476–481 (2017).
[Crossref]

Zhang, L.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Zhang, W.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, J.

Zhao, Y. T.

Zheng, G.

H. Zhang, G. Zheng, F. Xian, X. Zou, and J. Wang, “Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating,” Opt. Mater. 72, 476–481 (2017).
[Crossref]

Zhihong, Z.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Zhong, X.

Zhou, Q.

Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
[Crossref]

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

H. Liu, P. Liu, L. Bian, C. Liu, and Q. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express 8(4), 3256–3259 (2018).
[Crossref]

Zhu, B.

Zhu, J.

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Zide, J. M. O.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

Zou, X.

H. Zhang, G. Zheng, F. Xian, X. Zou, and J. Wang, “Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating,” Opt. Mater. 72, 476–481 (2017).
[Crossref]

ACS Photonics (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Adv. Opt. Mater. (1)

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

AEU Int. J. Electron. Commun. (1)

Q. Zhou, P. Liu, K. Wang, H. Liu, and D. Yu, “Absorptive frequency selective surface with switchable passband,” AEU Int. J. Electron. Commun. 89, 160–166 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Appl. Phys. Lett. (3)

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 7–9 (2008).

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

IEEE Photonics J. (1)

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antenn. Propag. 64(5), 1672–1680 (2016).
[Crossref]

J. Roberts, K. L. Ford, and J. M. Rigelsford, “Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces,” IEEE Trans. Antenn. Propag. 64(1), 251–261 (2016).
[Crossref]

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Mater. Chem. C (1)

X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C 1(4), 765–777 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Mater. Sci. Eng. Rep. (1)

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. Rep. 74(11), 351–376 (2013).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, “Free-standing graphene at atomic resolution,” Nat. Nanotechnol. 3(11), 676–681 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Commun. (2)

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Q. Zhou, P. Liu, L. Bian, H. Liu, C. Liu, and G. Chen, “Controlling enhanced absorption in graphene metamaterial,” Opt. Commun. 413, 310–316 (2018).
[Crossref]

Opt. Express (11)

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
[Crossref] [PubMed]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

H. Zhang, G. Zheng, F. Xian, X. Zou, and J. Wang, “Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating,” Opt. Mater. 72, 476–481 (2017).
[Crossref]

Opt. Mater. Express (3)

Photonics Nanostructures - Fundam Appl. (1)

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam Appl. 10, 353–358 (2012).

Phys. (1)

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Phys. Rev. Appl. (1)

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-affine graphene metasurfaces for tunable broadband absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Phys. Rev. B (1)

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Springer US (1)

R. W. Whatmore and R. Watton, “Pyroelectric Materials and devices. infrared detectors and emitters: materials and devices,” Springer US 8, 99–147 (2001).

Superlattices Microstruct. (1)

L. Bian, P. Liu, and G. Li, “Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies,” Superlattices Microstruct. 98, 522–534 (2016).
[Crossref]

Other (1)

B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic geometry of the dual-band MA. The values of the structure parameters are set as l = 312, w = 270.2, a = 150, b = 19.5, g = 6, tg = 0.001, tsio2 = 1, tP1 = 70, tAu = 0.5, unit: μm.
Fig. 2
Fig. 2 Surface impedance of graphene (a) real part (b) imaginary part.
Fig. 3
Fig. 3 Absorption spectra of the dual-band MA (a) different relaxation time (b) different chemical potentials.
Fig. 4
Fig. 4 Absorption spectra of the dual-band MA when EF = 0.3 eV, τ = 0.3 ps.
Fig. 5
Fig. 5 Electric field distribution of the dual-band MA on the top and side (a) 0.33 THz (b) 0.68 THz (c) 1.6 THz (d) 1.84 THz.
Fig. 6
Fig. 6 Absorbance of dual-band MA as a function of frequency and incident angle.
Fig. 7
Fig. 7 Schematic geometry of the FSS. The values of the structure parameters are set as l1 = 78, w1 = 67.55, a1 = 62.4, b1 = 47.28, a2 = 14.04, b2 = 10.81, d1 = 6, tg = 0.001, tP2 = 2, tAu = 0.5, unit: μm.
Fig. 8
Fig. 8 Equivalent circuit model of the FSS.
Fig. 9
Fig. 9 Reflection, transmission and absorption through the FSS (a) without polyimide layer (b) with polyimide layer.
Fig. 10
Fig. 10 Structure of the tunable triple-band AM.
Fig. 11
Fig. 11 Reflection, transmission and absorption through the triple-band AM.
Fig. 12
Fig. 12 Absorbance of triple-band AM as a function of frequency and chemical potential.
Fig. 13
Fig. 13 Structure of the controllable triple-band MA.
Fig. 14
Fig. 14 Comparison of absorption of these proposed structures.
Fig. 15
Fig. 15 Absorbance of triple-band MA as a function of frequency and chemical potential.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ g = σ g intra + σ g inter
σ g intra = 2 k B T e 2 π 2 ln[ 2cosh( E F 2 k B T ) ] i ω+i τ 1
σ g inter = e 2 4 [ H( ω/2 )+i 4ω π 0 H( Ω )H( ω/2 ) ω 2 4 Ω 2 dΩ ]
H( Ω )= sinh( Ω/ k B T ) cosh( E F / k B T )+cosh( Ω/ k B T )

Metrics