Abstract

Optical properties of conventional polysiloxane polymers used in fiber optics were analyzed. Transmission spectra and absorption coefficients of polymers in the operating wavelength range of Yb and Er doped fiber lasers were measured. Heating of Yb-doped active fiber inside the industrial laser unit poured with a silicone polymer protective layer was investigated. A part of the pump power converted into heat during laser generation was evaluated using experimental data obtained by substituting the active fiber with an electrically heated copper wire. Mathematical model of fiber laser unit heating was developed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low loss graded index polymer optical fiber with high stability under damp heat conditions

Kenji Makino, Takahiro Kado, Azusa Inoue, and Yasuhiro Koike
Opt. Express 20(12) 12893-12898 (2012)

3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion

T. Liu, Z. M. Yang, and S. H. Xu
Opt. Express 17(1) 235-247 (2009)

Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 µm

C. J. da Silva, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto
Opt. Lett. 24(18) 1287-1289 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
    [Crossref]
  2. O. A. Ryabushkin, R. I. Shaidullin, and I. A. Zaytsev, “Radio-frequency spectroscopy of the active fiber heating under condition of high-power lasing generation,” Opt. Lett. 40(9), 1972–1975 (2015).
    [Crossref] [PubMed]
  3. J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007).
  4. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
    [Crossref]
  5. A. G. Wacker Chemie, “Silicone Solutions for High-Performance LEDs,” https://www.wacker.com/cms/media/publications/downloads/6008_EN.pdf

2015 (1)

2009 (2)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Cain-Skaff, M.

M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Chatigny, S.

M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Lapointe, M.-A.

M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Maran, J.-N.

M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Piche, M.

M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Ryabushkin, O. A.

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Shaidullin, R. I.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Zaytsev, I. A.

Opt. Lett. (1)

Proc. SPIE (1)

M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Sens. Actuators A Phys. (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Other (2)

A. G. Wacker Chemie, “Silicone Solutions for High-Performance LEDs,” https://www.wacker.com/cms/media/publications/downloads/6008_EN.pdf

J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Transmission spectra of Silgel polymer at room temperature in the ranges of 800-1100 nm (a) and 1-2.3 μm (b). Yellow stripes denote typical operating wavelength ranges of fiber lasers with different dopants.
Fig. 2
Fig. 2 (a) Block scheme of the experimental setup for the measurement of polymers optical absorption coefficients; (b) Dependences of the Silgel sample heating on transmitted laser power measured for different radiation wavelengths.
Fig. 3
Fig. 3 Temperature dependences of the absorption coefficients of (a) all polymers at λ = 1064 nm, (b) the Silgel polymer at different wavelengths.
Fig. 4
Fig. 4 (a) Block scheme of the experimental setup for measurement of the polymer surface temperature in a fiber unit. Dark and light gray lines indicate metal wires and optical fiber, respectively. (b) Dependence of the Silgel polymer surface heating on the laser output power.
Fig. 5
Fig. 5 Dependences of the inner wire and polymer surface heating on the released thermal power.
Fig. 6
Fig. 6 3D view and a cross section of the temperature distribution (in °C) calculated for the Yb-doped fiber unit generating 100 W of output optical power and placed onto the optical table. Initial and ambient temperature was 20 °C.

Tables (1)

Tables Icon

Table 1 Temperature-averaged values of the absorption coefficients α of the studied polymers at different wavelengths (cm– 1)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( kT )=Q
kT=h( T out T)
T(t)= T out +exp( hS C t)( T o T out )

Metrics