Abstract

Hollow-core photonic bandgap Bragg fibers have a wide range of industrial sensing applications. Spectral scalability of the transmission window and detection accuracy are of particular importance in developing practical sensing instrumentations. In this work, we experimentally demonstrate the wavelength scalability of the fiber bandgap positions by simply controlling the fiber diameters and the bilayer thicknesses. In order to increase the spectral sensitivity and improve the detection accuracy of the sensing system, we propose to enhance the sensitivity by optimizing the Bragg fiber geometry. Both theoretical analysis and experimental demonstrations have been performed to verify the methodology. By designing and fabricating Bragg fibers with optimized bilayer thickness contrast, we have significantly enhanced the sensitivity by more than 32%. The optimized spectral sensitivity achieved experimentally in this work is 1850nm/RIU, which, to the best knowledge of the authors, is the highest value for the Bragg fiber-based refractive index sensors. Additionally, the influence of temperature on the sensor performance has been studied, and the temperature stability of our Bragg fiber sensor with aqueous solutions in the fiber core is only 45pm/°C. The presented fiber sensor can inherently integrate optical detection with microfluidics, thus allowing for online monitoring of the refractive index/concentration of many industrial fluids, trace amount of biomolecules, real-time detection of binding and affinity, study of kinetics, with enhanced accuracy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Squeezed hollow-core photonic Bragg fiber for surface sensing applications

Jingwen Li, Hang Qu, and Maksim Skorobogatiy
Opt. Express 24(14) 15687-15701 (2016)

Liquid-level sensing based on a hollow core Bragg fiber

Yu Wang, Guofeng Yan, Zhenggang Lian, Chunzhou Wu, and Sailing He
Opt. Express 26(17) 21656-21663 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, G. Yan, Z. Lian, C. Wu, and S. He, “Liquid-level sensing based on a hollow core Bragg fiber,” Opt. Express 26(17), 21656–21663 (2018).
    [Crossref] [PubMed]
  2. M. Zourob, S. Elwary, and A. Turner, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer, 2008).
  3. X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 88(1), 203–227 (2016).
    [Crossref] [PubMed]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  5. H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
    [Crossref]
  6. A. B. Dahlin, “An integrated view of refractometric detection,” in Plasmonic Biosensors (IOS Press, 2012).
  7. H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sens. Actuators B Chem. 161(1), 261–268 (2012).
    [Crossref]
  8. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref] [PubMed]
  9. Z. Xie, Z. Cao, Y. Liu, Q. Zhang, J. Zou, L. Shao, Y. Wang, J. He, and M. Li, “Highly-sensitive optical biosensor based on equal FSR cascaded microring resonator with intensity interrogation for detection of progesterone molecules,” Opt. Express 25(26), 33193–33201 (2017).
    [Crossref]
  10. X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  11. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  12. J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
    [Crossref] [PubMed]
  13. M. Skorobogatiy, “Resonant bio-chemical sensors based on Photonic Bandgap waveguides and fibers,” in Optical guided-wave chemical and biosensors II, Springer Series on Chemical Sensors and Biosensors, A. Lakhtakia and Z. Mohammod ed. (Springer-Verlag Berlin Heidelberg, 2010).
  14. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1196 (1999).
    [Crossref]
  15. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  16. J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B Chem. 128(1), 46–50 (2007).
    [Crossref]
  17. K. J. Rowland, V. Shahraam Afshar, A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20(1), 48–62 (2012).
    [Crossref] [PubMed]
  18. H. Qu and M. Skorobogatiy, “Liquid-core low-refractive-index-contrast Bragg fiber sensor,” Appl. Phys. Lett. 98(20), 201114 (2011).
    [Crossref]
  19. J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
    [Crossref] [PubMed]
  20. J. Li, H. Qu, and M. Skorobogatiy, “Squeezed hollow-core photonic Bragg fiber for surface sensing applications,” Opt. Express 24(14), 15687–15701 (2016).
    [Crossref] [PubMed]
  21. M. Skorobogatiy, “Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector,” Opt. Lett. 30(22), 2991–2993 (2005).
    [Crossref] [PubMed]
  22. E. Pone, C. Dubois, N. Gu, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, “Drawing of the hollow all-polymer Bragg fibers,” Opt. Express 14(13), 5838–5852 (2006).
    [Crossref] [PubMed]
  23. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  24. Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microw. Theory Tech. 58(7), 1985–1992 (2010).
    [Crossref]
  25. L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13–14), 3066–3074 (2012).
    [Crossref]
  26. J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
    [Crossref]
  27. Karuse and Z. H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. A 19(12), 1925–1928 (1981).
  28. H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mt. Sci. 29(19), 5193–5198 (1994).
  29. H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, I. Pavlov, T. Ishigure, and M. Skorobogatiy, “Photonic bandgap Bragg fiber sensors for bending/displacement detection,” Appl. Opt. 52(25), 6344–6349 (2013).
    [Crossref] [PubMed]
  30. S. K. Mitra, N. Dass, and N. C. Varshneya, “Temperature Dependence of the Refractive Index of Water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
    [Crossref]
  31. X. Fu, H. Xie, X. Zeng, G. Fu, and W. Bi, “Refractive index insensitive temperature sensor based on specialty triple-clad fiber,” Opt. Express 23(3), 2320–2327 (2015).
    [Crossref] [PubMed]
  32. S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
    [Crossref] [PubMed]
  33. S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
    [Crossref] [PubMed]
  34. H. Lu, Y. Yue, J. Du, L. Shao, T. Wu, J. Pan, and J. Hu, “Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop,” Opt. Express 26(15), 18920–18927 (2018).
    [PubMed]

2018 (2)

2017 (2)

2016 (2)

2015 (2)

2014 (1)

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

2013 (4)

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
[Crossref]

H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, I. Pavlov, T. Ishigure, and M. Skorobogatiy, “Photonic bandgap Bragg fiber sensors for bending/displacement detection,” Appl. Opt. 52(25), 6344–6349 (2013).
[Crossref] [PubMed]

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
[Crossref] [PubMed]

2012 (4)

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13–14), 3066–3074 (2012).
[Crossref]

H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sens. Actuators B Chem. 161(1), 261–268 (2012).
[Crossref]

K. J. Rowland, V. Shahraam Afshar, A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20(1), 48–62 (2012).
[Crossref] [PubMed]

2011 (1)

H. Qu and M. Skorobogatiy, “Liquid-core low-refractive-index-contrast Bragg fiber sensor,” Appl. Phys. Lett. 98(20), 201114 (2011).
[Crossref]

2010 (1)

Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microw. Theory Tech. 58(7), 1985–1992 (2010).
[Crossref]

2009 (1)

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

2007 (2)

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B Chem. 128(1), 46–50 (2007).
[Crossref]

2006 (1)

2005 (2)

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1196 (1999).
[Crossref]

1994 (1)

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mt. Sci. 29(19), 5193–5198 (1994).

1981 (1)

Karuse and Z. H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. A 19(12), 1925–1928 (1981).

1972 (1)

S. K. Mitra, N. Dass, and N. C. Varshneya, “Temperature Dependence of the Refractive Index of Water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Bang, O.

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1196 (1999).
[Crossref]

Bergeron, F.

Bi, W.

Bjarklev, A.

Bock, W. J.

J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
[Crossref]

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
[Crossref] [PubMed]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Boismenu, F.

Brastaviceanu, T.

Cao, Z.

Chan, C. C.

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B Chem. 128(1), 46–50 (2007).
[Crossref]

Chen, Z.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Chinnappan, R.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Dass, N.

S. K. Mitra, N. Dass, and N. C. Varshneya, “Temperature Dependence of the Refractive Index of Water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Day, D. E.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mt. Sci. 29(19), 5193–5198 (1994).

Dell’Olio, F.

Ding, Y.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Du, J.

Dubois, C.

Dupuis, A.

Eggleton, B. J.

Emiliyanov, G.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fink, Y.

Fu, G.

Fu, X.

Gao, Y.

Grochowski, J.

J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
[Crossref]

Gu, N.

Guerboukha, H.

He, J.

He, S.

Hoiby, P.

Hu, J.

Ishigure, T.

Jensen, J.

Karuse,

Karuse and Z. H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. A 19(12), 1925–1928 (1981).

Kuhlmey, B. T.

Kumar, A.

Lacroix, S.

Li, J.

Li, M.

Li, Q.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Lian, Z.

Lin, H.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mt. Sci. 29(19), 5193–5198 (1994).

Liu, Y.

Lu, H.

Lu, Z. H.

Karuse and Z. H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. A 19(12), 1925–1928 (1981).

Lv, H.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Mikulic, P.

J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
[Crossref]

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
[Crossref] [PubMed]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Mitra, S. K.

S. K. Mitra, N. Dass, and N. C. Varshneya, “Temperature Dependence of the Refractive Index of Water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Monro, T. M.

K. J. Rowland, V. Shahraam Afshar, A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20(1), 48–62 (2012).
[Crossref] [PubMed]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1196 (1999).
[Crossref]

Mysliwiec, M.

J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
[Crossref]

Nallappan, K.

Ng, A.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Olesik, J.

Pan, J.

Passaro, V. M. N.

Pavlov, I.

Pedersen, L.

Pone, E.

Qu, H.

Richardson, D. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1196 (1999).
[Crossref]

Robertson, I. D.

Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microw. Theory Tech. 58(7), 1985–1992 (2010).
[Crossref]

Rowland, K. J.

Shahraam Afshar, V.

Shao, L.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Skorobogatiy, M.

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref] [PubMed]

J. Li, H. Qu, and M. Skorobogatiy, “Squeezed hollow-core photonic Bragg fiber for surface sensing applications,” Opt. Express 24(14), 15687–15701 (2016).
[Crossref] [PubMed]

J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
[Crossref] [PubMed]

H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, I. Pavlov, T. Ishigure, and M. Skorobogatiy, “Photonic bandgap Bragg fiber sensors for bending/displacement detection,” Appl. Opt. 52(25), 6344–6349 (2013).
[Crossref] [PubMed]

H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sens. Actuators B Chem. 161(1), 261–268 (2012).
[Crossref]

H. Qu and M. Skorobogatiy, “Liquid-core low-refractive-index-contrast Bragg fiber sensor,” Appl. Phys. Lett. 98(20), 201114 (2011).
[Crossref]

E. Pone, C. Dubois, N. Gu, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, “Drawing of the hollow all-polymer Bragg fibers,” Opt. Express 14(13), 5838–5852 (2006).
[Crossref] [PubMed]

M. Skorobogatiy, “Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector,” Opt. Lett. 30(22), 2991–2993 (2005).
[Crossref] [PubMed]

Smietana, M.

J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
[Crossref]

Stoffer, J. O.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mt. Sci. 29(19), 5193–5198 (1994).

Stolyarov, A.

Sun, J.

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B Chem. 128(1), 46–50 (2007).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tolba, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Tripathi, S. M.

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
[Crossref] [PubMed]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Varshneya, N. C.

S. K. Mitra, N. Dass, and N. C. Varshneya, “Temperature Dependence of the Refractive Index of Water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

Wang, F.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 88(1), 203–227 (2016).
[Crossref] [PubMed]

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wang, Y.

Weaver, K. D.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mt. Sci. 29(19), 5193–5198 (1994).

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 88(1), 203–227 (2016).
[Crossref] [PubMed]

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wu, C.

Wu, D. K.

Wu, T.

Wu, Y.

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13–14), 3066–3074 (2012).
[Crossref]

Xiao, C.

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13–14), 3066–3074 (2012).
[Crossref]

Xie, H.

Xie, Z.

Xiong, L.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Yan, G.

Yang, L.

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13–14), 3066–3074 (2012).
[Crossref]

Yi, X.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Yu, H.

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Yue, Y.

Zeng, X.

Zhang, Q.

Zhang, Y.

Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microw. Theory Tech. 58(7), 1985–1992 (2010).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zou, J.

Zourob, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Acta Phys. Pol. A (1)

J. Grochowski, M. Mysliwiec, P. Mikulic, W. J. Bock, and M. Smietana, “Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings,” Acta Phys. Pol. A 124(3), 421–424 (2013).
[Crossref]

Anal. Chem. (2)

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 88(1), 203–227 (2016).
[Crossref] [PubMed]

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Solution concentration and refractive index sensing based on polymer microfiber knot resonator,” Appl. Phys. Express 7(2), 022501 (2014).
[Crossref]

Appl. Phys. Lett. (1)

H. Qu and M. Skorobogatiy, “Liquid-core low-refractive-index-contrast Bragg fiber sensor,” Appl. Phys. Lett. 98(20), 201114 (2011).
[Crossref]

Biosens. Bioelectron. (1)

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of Escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1196 (1999).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microw. Theory Tech. 58(7), 1985–1992 (2010).
[Crossref]

J. Chem. Phys. (1)

S. K. Mitra, N. Dass, and N. C. Varshneya, “Temperature Dependence of the Refractive Index of Water,” J. Chem. Phys. 57(4), 1798–1799 (1972).
[Crossref]

J. Mt. Sci. (1)

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mt. Sci. 29(19), 5193–5198 (1994).

J. Polym. Sci. A (1)

Karuse and Z. H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. A 19(12), 1925–1928 (1981).

Opt. Commun. (1)

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13–14), 3066–3074 (2012).
[Crossref]

Opt. Express (11)

E. Pone, C. Dubois, N. Gu, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, “Drawing of the hollow all-polymer Bragg fibers,” Opt. Express 14(13), 5838–5852 (2006).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
[Crossref] [PubMed]

J. Li, H. Qu, and M. Skorobogatiy, “Squeezed hollow-core photonic Bragg fiber for surface sensing applications,” Opt. Express 24(14), 15687–15701 (2016).
[Crossref] [PubMed]

H. Lu, Y. Yue, J. Du, L. Shao, T. Wu, J. Pan, and J. Hu, “Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop,” Opt. Express 26(15), 18920–18927 (2018).
[PubMed]

X. Fu, H. Xie, X. Zeng, G. Fu, and W. Bi, “Refractive index insensitive temperature sensor based on specialty triple-clad fiber,” Opt. Express 23(3), 2320–2327 (2015).
[Crossref] [PubMed]

K. J. Rowland, V. Shahraam Afshar, A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20(1), 48–62 (2012).
[Crossref] [PubMed]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref] [PubMed]

Y. Wang, G. Yan, Z. Lian, C. Wu, and S. He, “Liquid-level sensing based on a hollow core Bragg fiber,” Opt. Express 26(17), 21656–21663 (2018).
[Crossref] [PubMed]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

Z. Xie, Z. Cao, Y. Liu, Q. Zhang, J. Zou, L. Shao, Y. Wang, J. He, and M. Li, “Highly-sensitive optical biosensor based on equal FSR cascaded microring resonator with intensity interrogation for detection of progesterone molecules,” Opt. Express 25(26), 33193–33201 (2017).
[Crossref]

Opt. Lett. (3)

Sens. Actuators B Chem. (2)

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B Chem. 128(1), 46–50 (2007).
[Crossref]

H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sens. Actuators B Chem. 161(1), 261–268 (2012).
[Crossref]

Other (3)

M. Skorobogatiy, “Resonant bio-chemical sensors based on Photonic Bandgap waveguides and fibers,” in Optical guided-wave chemical and biosensors II, Springer Series on Chemical Sensors and Biosensors, A. Lakhtakia and Z. Mohammod ed. (Springer-Verlag Berlin Heidelberg, 2010).

M. Zourob, S. Elwary, and A. Turner, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer, 2008).

A. B. Dahlin, “An integrated view of refractometric detection,” in Plasmonic Biosensors (IOS Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A Bragg fiber featuring a large hollow core surrounded by a periodic sequence of high and low refractive index layers.
Fig. 2
Fig. 2 Dependence of the spectral sensitivity of the Bragg fiber on the bilayer thickness contrast in the Bragg reflector.
Fig. 3
Fig. 3 Cross section of the Bragg reflector taken by a scanning electron microscope (SEM), which features alternating polystyrene (PS) /poly-methacrylate (PMMA) layers. (a) Bragg fiber sample 1 with a bilayer thickness contrast of ~1. (b) Bragg fiber sample 2 with an average bilayer thickness contrast of ~0.3.
Fig. 4
Fig. 4 Experimental setup for characterizing the liquid-core Bragg fiber sensors.
Fig. 5
Fig. 5 Scalability of the bandgap positions of the water-filled Bragg fibers by controlling the outer diameter.
Fig. 6
Fig. 6 (a) Experimental characterization of the spectral sensitivity of a Bragg fiber with bilayer thickness contrast of ~1. (b) Experimental characterization of the spectral sensitivity of a Bragg fiber with a bilayer thickness contrast of ~0.3.
Fig. 7
Fig. 7 (a) Simulated transmission spectra of a water-filled Bragg fiber sensor at different temperatures. (b) Spectral positions of the transmission peak at various temperatures.

Tables (1)

Tables Icon

Table 1 Temperature response of some of the recently reported fiber-based refractive index sensors

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ 2 = d l n l 2 n c 2 + d h n h 2 n c 2
S= λ n c =2[ d h ( n h 2 n c 2 1) 1/2 + d l ( n l 2 n c 2 1) 1/2 ]

Metrics