Abstract

Using electromagnetic modeling and analytical methods, we study the optimal conditions of an enantioselective optical process (EOP) through the interaction potential between enantiomers and localized chiral near-fields created by asymmetric plasmonic crescent moon (PCM) nanoapertures when it is illuminated with circularly polarized light. We introduce a chiral dissymmetry factor which measures the degree of chiral discrimination of the EOP and we found that it depends mainly on the differential field intensification, near-field optical chirality and the handedness of the enantiomers. Our results prove that a sub-10-nm non-magnetic enantiomer pair of chiral spherical molecules with chirality parameter up to $\pm 0.005$ can be passively separated under dual-symmetric conditions. The method and the proposed nanostructure may enable all-optical enantioseparation of single-chiral macromolecules, such as proteins and carbohydrates.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tuning spontaneous radiation of chiral molecules by asymmetric chiral nanoparticles

Dmitry V. Guzatov, Vasily V. Klimov, Hsun-Chi Chan, and Guang-Yu Guo
Opt. Express 25(6) 6036-6052 (2017)

Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement

Daniel Lin and Jer-Shing Huang
Opt. Express 22(7) 7434-7445 (2014)

Eigen oscillations of a chiral sphere and their influence on radiation of chiral molecules

V.V. Klimov, I.V. Zabkov, A.A. Pavlov, and D.V. Guzatov
Opt. Express 22(15) 18564-18578 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
    [Crossref]
  2. T. L. Chester, “Recent Developments in High-Performance Liquid Chromatography Stationary Phases,” Anal. Chem. 85(2), 579–589 (2013).
    [Crossref]
  3. R. S. Hegade, M. De Beer, and F. Lynen, “Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers,” J. Chromatogr. A 1515, 109–117 (2017).
    [Crossref]
  4. A. Sebestová and J. Petr, “Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters,” Electrophoresis 38(24), 3124–3129 (2017).
    [Crossref]
  5. G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
    [Crossref]
  6. I. Paci, I. Szleifer, and M. A. Ratner, “Chiral Separation: Mechanism Modeling in Two-Dimensional Systems,” J. Am. Chem. Soc. 129(12), 3545–3555 (2007).
    [Crossref]
  7. G. K. E. Scriba, “Chiral recognition in separation science – an update,” J. Chromatogr. A 1467, 56–78 (2016).
    [Crossref]
  8. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
    [Crossref]
  9. E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
    [Crossref]
  10. J. Garcá-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays,” Nano Lett. 18(10), 6279–6285 (2018).
    [Crossref]
  11. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref]
  12. R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
    [Crossref]
  13. C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
    [Crossref]
  14. E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
    [Crossref]
  15. M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
    [Crossref]
  16. T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
    [Crossref]
  17. S. J. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
    [Crossref]
  18. T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
    [Crossref]
  19. A. Vázquez-Guardado and D. Chanda, “Superchiral Light Generation on Degenerate Achiral Surfaces,” Phys. Rev. Lett. 120(13), 137601 (2018).
    [Crossref]
  20. T. J. Davis and D. E. Gomez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90(23), 235424 (2014).
    [Crossref]
  21. S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
    [Crossref]
  22. G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5(1), 3577 (2014).
    [Crossref]
  23. A. Hayat, J. P. Balthasar Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U. S. A. 112(43), 13190–13194 (2015).
    [Crossref]
  24. M. H. Alizadeh and Björn M. Reinhard, “Transverse Chiral Optical Forces by Chiral Surface Plasmon Polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
    [Crossref]
  25. I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
    [Crossref]
  26. M. H. Alizadeh and B. M. R Einhard, “Dominant chiral optical forces in the vicinity of optical nanofibers,” Opt. Lett. 41(20), 4735–4738 (2016).
    [Crossref]
  27. F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108(6), 061102 (2016).
    [Crossref]
  28. T. Cao and Y. Qiu, “Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region,” Nanoscale 10(2), 566–574 (2018).
    [Crossref]
  29. A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
    [Crossref]
  30. D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
    [Crossref]
  31. Y. Zhao, Amr A. E. Saleh, and J. A. Dionne, “Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 3(3), 304–309 (2016).
    [Crossref]
  32. Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
    [Crossref]
  33. Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
    [Crossref]
  34. W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
    [Crossref]
  35. M. Schaferling and H. Giessen, “Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2533–2534 (2018).
    [Crossref]
  36. Y. Zhao and J. Dionne, “Response to Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2535–2536 (2018).
    [Crossref]
  37. L. Carretero, P. Acebal, and S. Blaya, “Chiral Rayleigh particles discrimination in dynamic dual optical traps,” J. Quant. Spectrosc. Radiat. Transfer 201, 209–215 (2017).
    [Crossref]
  38. P. Acebal, L. Carretero, and S. Blaya, “Design of an optical conveyor for selective separation of a mixture of enantiomers,” Opt. Express 25(26), 32290–32304 (2017).
    [Crossref]
  39. S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
    [Crossref]
  40. I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
    [Crossref]
  41. C.-S. Ho, A. Garcia-Etxarri, Y. Zhao, and J. Dionne, “Enhancing Enantioselective Absorption Using Dielectric Nanospheres,” ACS Photonics 4(2), 197–203 (2017).
    [Crossref]
  42. T. Cao, L. Tian, H. Liang, and K.-R. Qin, “Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability,” Microsyst. Nanoeng. 4(1), 7 (2018).
    [Crossref]
  43. H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
    [Crossref]
  44. T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
    [Crossref]
  45. Y. Tang and A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
    [Crossref]
  46. Y. Tang and A. E. Cohen, “Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light,” Science 332(6027), 333–336 (2011).
    [Crossref]
  47. K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A 83(2), 021803 (2011).
    [Crossref]
  48. J. S. Choi and M. Cho, “Limitations of a superchiral field,” Phys. Rev. A 86(6), 063834 (2012).
    [Crossref]
  49. J. E. Vázquez-Lozano and A. Martínez, “Optical Chirality in Dispersive and Lossy Media,” Phys. Rev. Lett. 121(4), 043901 (2018).
    [Crossref]
  50. M. Schaferling, X. Yin, N. Engheta, and H. Giessen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1(6), 530–537 (2014).
    [Crossref]
  51. M. H. Alizadeh and B. M. Reinhard, “Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons,” ACS Photonics 2(7), 942–949 (2015).
    [Crossref]
  52. X. Tian, Y. Fang, and M. Sun, “Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures,” Sci. Rep. 5(1), 17534 (2015).
    [Crossref]
  53. M. H. Alizadeh and B. M. Reinhard, “Plasmonically Enhanced Chiral Optical Fields and Forces in Achiral Split Ring Resonators,” ACS Photonics 2(3), 361–368 (2015).
    [Crossref]
  54. M. Schaferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS Photonics 3(6), 1076–1084 (2016).
    [Crossref]
  55. C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
    [Crossref]
  56. L. Kang, Q. Ren, and D. H. Werner, “Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
    [Crossref]
  57. A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
    [Crossref]
  58. T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photonics Res. 5(5), 441–449 (2017).
    [Crossref]
  59. T. Fu, Y. Chen, T. Wang, H. Li, Z. Zhang, and L. Wang, “Active control of optical chirality with graphene-based achiral nanorings,” Opt. Express 25(20), 24623–24629 (2017).
    [Crossref]
  60. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18(11), 11428–11443 (2010).
    [Crossref]
  61. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, “Electromagnetic Waves in Chiral and Bi-isotropic Media,” 1st ed.; Artech House: London (1994).
  62. D. Lipkin, “Existence of a New Conservation Law in Electromagnetic Theory,” J. Math. Phys. 5(5), 696–700 (1964).
    [Crossref]
  63. B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
    [Crossref]
  64. S. R. Aragon and D. K. Hahn, “Polarizability and Kerr constant of proteins by boundary element methods,” Colloids Surf., B 56(1-2), 19–25 (2007).
    [Crossref]
  65. Y. Chen, J. Gao, and X. Yang, “Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking,” Nano Lett. 18(1), 520–527 (2018).
    [Crossref]
  66. S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
    [Crossref]
  67. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
    [Crossref]
  68. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(1), 825 (2012).
    [Crossref]
  69. H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
    [Crossref]
  70. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
    [Crossref]

2018 (11)

G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
[Crossref]

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

J. Garcá-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays,” Nano Lett. 18(10), 6279–6285 (2018).
[Crossref]

A. Vázquez-Guardado and D. Chanda, “Superchiral Light Generation on Degenerate Achiral Surfaces,” Phys. Rev. Lett. 120(13), 137601 (2018).
[Crossref]

T. Cao and Y. Qiu, “Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region,” Nanoscale 10(2), 566–574 (2018).
[Crossref]

M. Schaferling and H. Giessen, “Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2533–2534 (2018).
[Crossref]

Y. Zhao and J. Dionne, “Response to Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2535–2536 (2018).
[Crossref]

T. Cao, L. Tian, H. Liang, and K.-R. Qin, “Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability,” Microsyst. Nanoeng. 4(1), 7 (2018).
[Crossref]

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

J. E. Vázquez-Lozano and A. Martínez, “Optical Chirality in Dispersive and Lossy Media,” Phys. Rev. Lett. 121(4), 043901 (2018).
[Crossref]

Y. Chen, J. Gao, and X. Yang, “Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking,” Nano Lett. 18(1), 520–527 (2018).
[Crossref]

2017 (17)

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photonics Res. 5(5), 441–449 (2017).
[Crossref]

T. Fu, Y. Chen, T. Wang, H. Li, Z. Zhang, and L. Wang, “Active control of optical chirality with graphene-based achiral nanorings,” Opt. Express 25(20), 24623–24629 (2017).
[Crossref]

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
[Crossref]

L. Kang, Q. Ren, and D. H. Werner, “Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

L. Carretero, P. Acebal, and S. Blaya, “Chiral Rayleigh particles discrimination in dynamic dual optical traps,” J. Quant. Spectrosc. Radiat. Transfer 201, 209–215 (2017).
[Crossref]

P. Acebal, L. Carretero, and S. Blaya, “Design of an optical conveyor for selective separation of a mixture of enantiomers,” Opt. Express 25(26), 32290–32304 (2017).
[Crossref]

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

C.-S. Ho, A. Garcia-Etxarri, Y. Zhao, and J. Dionne, “Enhancing Enantioselective Absorption Using Dielectric Nanospheres,” ACS Photonics 4(2), 197–203 (2017).
[Crossref]

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
[Crossref]

R. S. Hegade, M. De Beer, and F. Lynen, “Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers,” J. Chromatogr. A 1515, 109–117 (2017).
[Crossref]

A. Sebestová and J. Petr, “Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters,” Electrophoresis 38(24), 3124–3129 (2017).
[Crossref]

2016 (9)

G. K. E. Scriba, “Chiral recognition in separation science – an update,” J. Chromatogr. A 1467, 56–78 (2016).
[Crossref]

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

Y. Zhao, Amr A. E. Saleh, and J. A. Dionne, “Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 3(3), 304–309 (2016).
[Crossref]

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

M. H. Alizadeh and B. M. R Einhard, “Dominant chiral optical forces in the vicinity of optical nanofibers,” Opt. Lett. 41(20), 4735–4738 (2016).
[Crossref]

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108(6), 061102 (2016).
[Crossref]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

M. Schaferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

2015 (6)

M. H. Alizadeh and B. M. Reinhard, “Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

X. Tian, Y. Fang, and M. Sun, “Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures,” Sci. Rep. 5(1), 17534 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Plasmonically Enhanced Chiral Optical Fields and Forces in Achiral Split Ring Resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

A. Hayat, J. P. Balthasar Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U. S. A. 112(43), 13190–13194 (2015).
[Crossref]

M. H. Alizadeh and Björn M. Reinhard, “Transverse Chiral Optical Forces by Chiral Surface Plasmon Polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

2014 (7)

S. J. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

T. J. Davis and D. E. Gomez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90(23), 235424 (2014).
[Crossref]

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5(1), 3577 (2014).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

M. Schaferling, X. Yin, N. Engheta, and H. Giessen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
[Crossref]

2013 (6)

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

T. L. Chester, “Recent Developments in High-Performance Liquid Chromatography Stationary Phases,” Anal. Chem. 85(2), 579–589 (2013).
[Crossref]

2012 (4)

M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[Crossref]

J. S. Choi and M. Cho, “Limitations of a superchiral field,” Phys. Rev. A 86(6), 063834 (2012).
[Crossref]

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(1), 825 (2012).
[Crossref]

2011 (2)

Y. Tang and A. E. Cohen, “Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light,” Science 332(6027), 333–336 (2011).
[Crossref]

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A 83(2), 021803 (2011).
[Crossref]

2010 (3)

Y. Tang and A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18(11), 11428–11443 (2010).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

2007 (2)

I. Paci, I. Szleifer, and M. A. Ratner, “Chiral Separation: Mechanism Modeling in Two-Dimensional Systems,” J. Am. Chem. Soc. 129(12), 3545–3555 (2007).
[Crossref]

S. R. Aragon and D. K. Hahn, “Polarizability and Kerr constant of proteins by boundary element methods,” Colloids Surf., B 56(1-2), 19–25 (2007).
[Crossref]

2004 (1)

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[Crossref]

1964 (1)

D. Lipkin, “Existence of a New Conservation Law in Electromagnetic Theory,” J. Math. Phys. 5(5), 696–700 (1964).
[Crossref]

Acebal, P.

L. Carretero, P. Acebal, and S. Blaya, “Chiral Rayleigh particles discrimination in dynamic dual optical traps,” J. Quant. Spectrosc. Radiat. Transfer 201, 209–215 (2017).
[Crossref]

P. Acebal, L. Carretero, and S. Blaya, “Design of an optical conveyor for selective separation of a mixture of enantiomers,” Opt. Express 25(26), 32290–32304 (2017).
[Crossref]

Aizpurua, J.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(1), 825 (2012).
[Crossref]

Alizadeh, M. H.

M. H. Alizadeh and B. M. R Einhard, “Dominant chiral optical forces in the vicinity of optical nanofibers,” Opt. Lett. 41(20), 4735–4738 (2016).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Plasmonically Enhanced Chiral Optical Fields and Forces in Achiral Split Ring Resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

M. H. Alizadeh and Björn M. Reinhard, “Transverse Chiral Optical Forces by Chiral Surface Plasmon Polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

Altug, H.

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

Alù, A.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Alù, Andrea

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Andrews, D. L.

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

Andronaki, S. A.

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

Anne van de Haar, M.

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Aragon, S. R.

S. R. Aragon and D. K. Hahn, “Polarizability and Kerr constant of proteins by boundary element methods,” Colloids Surf., B 56(1-2), 19–25 (2007).
[Crossref]

Askarpour, A. N.

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Bachelot, R.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

Baida, F. I.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[Crossref]

Baimuratov, A. S.

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

Balthasar Mueller, J. P.

A. Hayat, J. P. Balthasar Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U. S. A. 112(43), 13190–13194 (2015).
[Crossref]

Banas, A.

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

Banas, K.

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

Baranov, A. V.

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

Barron, L. D.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Baum, B.

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Belkhir, A.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[Crossref]

Blaya, S.

P. Acebal, L. Carretero, and S. Blaya, “Design of an optical conveyor for selective separation of a mixture of enantiomers,” Opt. Express 25(26), 32290–32304 (2017).
[Crossref]

L. Carretero, P. Acebal, and S. Blaya, “Chiral Rayleigh particles discrimination in dynamic dual optical traps,” J. Quant. Spectrosc. Radiat. Transfer 201, 209–215 (2017).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A 83(2), 021803 (2011).
[Crossref]

Borisov, A. G.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(1), 825 (2012).
[Crossref]

Bradshaw, D. S.

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

Brasselet, E.

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5(1), 3577 (2014).
[Crossref]

Braun, P. V.

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

Briggs, J. A.

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Brixner, T.

C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
[Crossref]

Budau, M.

G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
[Crossref]

Canaguier-Durand, A.

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Cao, T.

T. Cao and Y. Qiu, “Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region,” Nanoscale 10(2), 566–574 (2018).
[Crossref]

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

T. Cao, L. Tian, H. Liang, and K.-R. Qin, “Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability,” Microsyst. Nanoeng. 4(1), 7 (2018).
[Crossref]

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photonics Res. 5(5), 441–449 (2017).
[Crossref]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Capasso, F.

A. Hayat, J. P. Balthasar Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U. S. A. 112(43), 13190–13194 (2015).
[Crossref]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Carretero, L.

L. Carretero, P. Acebal, and S. Blaya, “Chiral Rayleigh particles discrimination in dynamic dual optical traps,” J. Quant. Spectrosc. Radiat. Transfer 201, 209–215 (2017).
[Crossref]

P. Acebal, L. Carretero, and S. Blaya, “Design of an optical conveyor for selective separation of a mixture of enantiomers,” Opt. Express 25(26), 32290–32304 (2017).
[Crossref]

Chan, C. T.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

Chanda, D.

A. Vázquez-Guardado and D. Chanda, “Superchiral Light Generation on Degenerate Achiral Surfaces,” Phys. Rev. Lett. 120(13), 137601 (2018).
[Crossref]

Chantada, L.

Chao, B.-K.

S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
[Crossref]

Chen, S.-W.

S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
[Crossref]

Chen, Y.

Y. Chen, J. Gao, and X. Yang, “Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking,” Nano Lett. 18(1), 520–527 (2018).
[Crossref]

T. Fu, Y. Chen, T. Wang, H. Li, Z. Zhang, and L. Wang, “Active control of optical chirality with graphene-based achiral nanorings,” Opt. Express 25(20), 24623–24629 (2017).
[Crossref]

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

Chester, T. L.

T. L. Chester, “Recent Developments in High-Performance Liquid Chromatography Stationary Phases,” Anal. Chem. 85(2), 579–589 (2013).
[Crossref]

Cho, M.

S. J. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

J. S. Choi and M. Cho, “Limitations of a superchiral field,” Phys. Rev. A 86(6), 063834 (2012).
[Crossref]

Cho, S.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Choi, J. S.

J. S. Choi and M. Cho, “Limitations of a superchiral field,” Phys. Rev. A 86(6), 063834 (2012).
[Crossref]

Chui, H.-C.

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light,” Science 332(6027), 333–336 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref]

Cooke, G.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

Davis, T. J.

T. J. Davis and D. E. Gomez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90(23), 235424 (2014).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

De Beer, M.

R. S. Hegade, M. De Beer, and F. Lynen, “Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers,” J. Chromatogr. A 1515, 109–117 (2017).
[Crossref]

de Moura, A. F.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Dehkhoda, P.

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

Dionne, J.

Y. Zhao and J. Dionne, “Response to Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2535–2536 (2018).
[Crossref]

C.-S. Ho, A. Garcia-Etxarri, Y. Zhao, and J. Dionne, “Enhancing Enantioselective Absorption Using Dielectric Nanospheres,” ACS Photonics 4(2), 197–203 (2017).
[Crossref]

Dionne, J. A.

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Y. Zhao, Amr A. E. Saleh, and J. A. Dionne, “Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 3(3), 304–309 (2016).
[Crossref]

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

Dodson, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

Ebbesen, T. W.

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Einhard, B. M. R

Engheta, N.

M. Schaferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

M. Schaferling, X. Yin, N. Engheta, and H. Giessen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(1), 825 (2012).
[Crossref]

Fan, Z.

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref]

Fang, Y.

X. Tian, Y. Fang, and M. Sun, “Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures,” Sci. Rep. 5(1), 17534 (2015).
[Crossref]

Fedorov, A. V.

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

Fitzpatrick, B.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

Frank, B.

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

Fu, Q.

E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
[Crossref]

Fu, T.

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

T. Fu, Y. Chen, T. Wang, H. Li, Z. Zhang, and L. Wang, “Active control of optical chirality with graphene-based achiral nanorings,” Opt. Express 25(20), 24623–24629 (2017).
[Crossref]

Gadegaard, N.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Gagyi, L.

G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
[Crossref]

Gan, J.

E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
[Crossref]

Gao, J.

Y. Chen, J. Gao, and X. Yang, “Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking,” Nano Lett. 18(1), 520–527 (2018).
[Crossref]

Garcá-Guirado, J.

J. Garcá-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays,” Nano Lett. 18(10), 6279–6285 (2018).
[Crossref]

Garcia-Etxarri, A.

C.-S. Ho, A. Garcia-Etxarri, Y. Zhao, and J. Dionne, “Enhancing Enantioselective Absorption Using Dielectric Nanospheres,” ACS Photonics 4(2), 197–203 (2017).
[Crossref]

García-Etxarri, A.

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

Genet, C.

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Giessen, H.

M. Schaferling and H. Giessen, “Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2533–2534 (2018).
[Crossref]

C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
[Crossref]

M. Schaferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

M. Schaferling, X. Yin, N. Engheta, and H. Giessen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[Crossref]

Gomez, D. E.

T. J. Davis and D. E. Gomez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90(23), 235424 (2014).
[Crossref]

Gómez-Medina, R.

Govorov, A. O.

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref]

Granet, G.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[Crossref]

Gun’ko, Y. K.

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

Haggui, M.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

Hahn, D. K.

S. R. Aragon and D. K. Hahn, “Polarizability and Kerr constant of proteins by boundary element methods,” Colloids Surf., B 56(1-2), 19–25 (2007).
[Crossref]

Hancu, G.

G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
[Crossref]

Hayat, A.

A. Hayat, J. P. Balthasar Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U. S. A. 112(43), 13190–13194 (2015).
[Crossref]

Hegade, R. S.

R. S. Hegade, M. De Beer, and F. Lynen, “Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers,” J. Chromatogr. A 1515, 109–117 (2017).
[Crossref]

Hein, S. M.

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

Hendry, E.

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Ho, C.-S.

C.-S. Ho, A. Garcia-Etxarri, Y. Zhao, and J. Dionne, “Enhancing Enantioselective Absorption Using Dielectric Nanospheres,” ACS Photonics 4(2), 197–203 (2017).
[Crossref]

Hor, Y. L.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

Hsueh, C.-H.

S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
[Crossref]

Huang, Y.-H.

S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
[Crossref]

Hutchison, J. A.

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Jack, C.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

Jacob, Z.

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108(6), 061102 (2016).
[Crossref]

Jang, H.-J.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Jung, I.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Kadodwala, M.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Kalhor, F.

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108(6), 061102 (2016).
[Crossref]

Kang, L.

L. Kang, Q. Ren, and D. H. Werner, “Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Karimullah, A. S.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Khoo, E. H.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

Kotov, N. A.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Kramer, C.

C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
[Crossref]

Kuang, H.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Lapthorn, A.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Lay, A.

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Lee, S.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Leong, E. S. P.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

Leyman, R.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

Li, H.

Li, J.-H.

S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
[Crossref]

Li, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

Li, X.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Li, Y.

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photonics Res. 5(5), 441–449 (2017).
[Crossref]

Liang, H.

T. Cao, L. Tian, H. Liang, and K.-R. Qin, “Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability,” Microsyst. Nanoeng. 4(1), 7 (2018).
[Crossref]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Lindell, I. V.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, “Electromagnetic Waves in Chiral and Bi-isotropic Media,” 1st ed.; Artech House: London (1994).

Lipkin, D.

D. Lipkin, “Existence of a New Conservation Law in Electromagnetic Theory,” J. Math. Phys. 5(5), 696–700 (1964).
[Crossref]

Liu, Y. J.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

Lu, L.

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

Lu, Z.

E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
[Crossref]

Lynen, F.

R. S. Hegade, M. De Beer, and F. Lynen, “Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers,” J. Chromatogr. A 1515, 109–117 (2017).
[Crossref]

Ma, W.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Mao, L.

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

Martínez, A.

J. E. Vázquez-Lozano and A. Martínez, “Optical Chirality in Dispersive and Lossy Media,” Phys. Rev. Lett. 121(4), 043901 (2018).
[Crossref]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Mohammadi, E.

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

Moreau, A.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[Crossref]

Muntean, D. L.

G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
[Crossref]

Nieto-Vesperinas, M.

Nordlander, P.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(1), 825 (2012).
[Crossref]

Nori, F.

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A 83(2), 021803 (2011).
[Crossref]

Paci, I.

I. Paci, I. Szleifer, and M. A. Ratner, “Chiral Separation: Mechanism Modeling in Two-Dimensional Systems,” J. Am. Chem. Soc. 129(12), 3545–3555 (2007).
[Crossref]

Park, Q.-H.

S. J. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

Park, S.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Petr, J.

A. Sebestová and J. Petr, “Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters,” Electrophoresis 38(24), 3124–3129 (2017).
[Crossref]

Phua, W. K.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

Plain, J.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Puigdollers, J.

J. Garcá-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays,” Nano Lett. 18(10), 6279–6285 (2018).
[Crossref]

Qin, K.-R.

T. Cao, L. Tian, H. Liang, and K.-R. Qin, “Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability,” Microsyst. Nanoeng. 4(1), 7 (2018).
[Crossref]

Qiu, C.-W.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Qiu, Y.

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

T. Cao and Y. Qiu, “Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region,” Nanoscale 10(2), 566–574 (2018).
[Crossref]

Qu, Y.

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

Quidant, R.

J. Garcá-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays,” Nano Lett. 18(10), 6279–6285 (2018).
[Crossref]

Ratner, M. A.

I. Paci, I. Szleifer, and M. A. Ratner, “Chiral Separation: Mechanism Modeling in Two-Dimensional Systems,” J. Am. Chem. Soc. 129(12), 3545–3555 (2007).
[Crossref]

Reinhard, B. M.

M. H. Alizadeh and B. M. Reinhard, “Plasmonically Enhanced Chiral Optical Fields and Forces in Achiral Split Ring Resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

Reinhard, Björn M.

M. H. Alizadeh and Björn M. Reinhard, “Transverse Chiral Optical Forces by Chiral Surface Plasmon Polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

Ren, Q.

L. Kang, Q. Ren, and D. H. Werner, “Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Reyes-Becerra, O. A.

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Rodier, M.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

Rotello, V. M.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

Ruan, S.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Rukhlenko, I. D.

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

Rusu, A.

G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
[Crossref]

Sáenz, J. J.

Saleh, Amr A. E.

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Y. Zhao, Amr A. E. Saleh, and J. A. Dionne, “Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 3(3), 304–309 (2016).
[Crossref]

Sanganyado, E.

E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
[Crossref]

Schaferling, M.

M. Schaferling and H. Giessen, “Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2533–2534 (2018).
[Crossref]

M. Schaferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

M. Schaferling, X. Yin, N. Engheta, and H. Giessen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[Crossref]

Schaferling., M.

C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
[Crossref]

Schlenk, D.

E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
[Crossref]

Scriba, G. K. E.

G. K. E. Scriba, “Chiral recognition in separation science – an update,” J. Chromatogr. A 1467, 56–78 (2016).
[Crossref]

Sebestová, A.

A. Sebestová and J. Petr, “Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters,” Electrophoresis 38(24), 3124–3129 (2017).
[Crossref]

Shalkovskiy, A. G.

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

Shi, J.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Shuford, K. L.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Sihvola, A. H.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, “Electromagnetic Waves in Chiral and Bi-isotropic Media,” 1st ed.; Artech House: London (1994).

Simpson, R. E.

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

Sun, L.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Sun, M.

X. Tian, Y. Fang, and M. Sun, “Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures,” Sci. Rep. 5(1), 17534 (2015).
[Crossref]

Svedendahl, M.

J. Garcá-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays,” Nano Lett. 18(10), 6279–6285 (2018).
[Crossref]

Szleifer, I.

I. Paci, I. Szleifer, and M. A. Ratner, “Chiral Separation: Mechanism Modeling in Two-Dimensional Systems,” J. Am. Chem. Soc. 129(12), 3545–3555 (2007).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light,” Science 332(6027), 333–336 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref]

Tavakoli, A.

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

Tepliakov, N. V.

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

Thundat, T.

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108(6), 061102 (2016).
[Crossref]

Tian, L.

T. Cao, L. Tian, H. Liang, and K.-R. Qin, “Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability,” Microsyst. Nanoeng. 4(1), 7 (2018).
[Crossref]

Tian, X.

X. Tian, Y. Fang, and M. Sun, “Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures,” Sci. Rep. 5(1), 17534 (2015).
[Crossref]

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5(1), 3577 (2014).
[Crossref]

Tretyakov, S. A.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, “Electromagnetic Waves in Chiral and Bi-isotropic Media,” 1st ed.; Artech House: London (1994).

Tsakmakidis, K. L.

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

Tullius, R.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

Van Labeke, D.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[Crossref]

Vázquez-Guardado, A.

A. Vázquez-Guardado and D. Chanda, “Superchiral Light Generation on Degenerate Achiral Surfaces,” Phys. Rev. Lett. 120(13), 137601 (2018).
[Crossref]

Vázquez-Lozano, J. E.

J. E. Vázquez-Lozano and A. Martínez, “Optical Chirality in Dispersive and Lossy Media,” Phys. Rev. Lett. 121(4), 043901 (2018).
[Crossref]

Viitanen, A. J.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, “Electromagnetic Waves in Chiral and Bi-isotropic Media,” 1st ed.; Artech House: London (1994).

Vovk, I. A.

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

Wang, L.

Wang, S. B.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

Wang, T.

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

T. Fu, Y. Chen, T. Wang, H. Li, Z. Zhang, and L. Wang, “Active control of optical chirality with graphene-based achiral nanorings,” Opt. Express 25(20), 24623–24629 (2017).
[Crossref]

Wang, Y.

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

Weiss, T.

C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
[Crossref]

M. Schaferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

Werner, D. H.

L. Kang, Q. Ren, and D. H. Werner, “Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Wu, S. J.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

Wu, X.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Xiong, Q.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

Xu, C.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Xu, L.

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Yang, X.

Y. Chen, J. Gao, and X. Yang, “Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking,” Nano Lett. 18(1), 520–527 (2018).
[Crossref]

Yin, X.

M. Schaferling, X. Yin, N. Engheta, and H. Giessen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[Crossref]

Yoo, S.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Yoo, S. J.

S. J. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

Yu. Leonov, M.

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

Zhang, L.

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Zhang, S.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Zhang, X.

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photonics Res. 5(5), 441–449 (2017).
[Crossref]

Zhang, Z.

T. Fu, Y. Chen, T. Wang, H. Li, Z. Zhang, and L. Wang, “Active control of optical chirality with graphene-based achiral nanorings,” Opt. Express 25(20), 24623–24629 (2017).
[Crossref]

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

Zhao, J.

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

Zhao, Y.

Y. Zhao and J. Dionne, “Response to Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2535–2536 (2018).
[Crossref]

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

C.-S. Ho, A. Garcia-Etxarri, Y. Zhao, and J. Dionne, “Enhancing Enantioselective Absorption Using Dielectric Nanospheres,” ACS Photonics 4(2), 197–203 (2017).
[Crossref]

Y. Zhao, Amr A. E. Saleh, and J. A. Dionne, “Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 3(3), 304–309 (2016).
[Crossref]

Zhu, W.

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

Zou, Y.

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photonics Res. 5(5), 441–449 (2017).
[Crossref]

ACS Nano (1)

B. Frank, X. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref]

ACS Photonics (13)

M. Schaferling, X. Yin, N. Engheta, and H. Giessen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C.-W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

C.-S. Ho, A. Garcia-Etxarri, Y. Zhao, and J. Dionne, “Enhancing Enantioselective Absorption Using Dielectric Nanospheres,” ACS Photonics 4(2), 197–203 (2017).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Plasmonically Enhanced Chiral Optical Fields and Forces in Achiral Split Ring Resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

M. Schaferling, N. Engheta, H. Giessen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS Photonics 3(6), 1076–1084 (2016).
[Crossref]

C. Kramer, M. Schaferling., T. Weiss, H. Giessen, and T. Brixner, “Analytic Optimization of Near-Field Optical Chirality Enhancement,” ACS Photonics 4(2), 396–406 (2017).
[Crossref]

L. Kang, Q. Ren, and D. H. Werner, “Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

E. Mohammadi, K. L. Tsakmakidis, A. N. Askarpour, P. Dehkhoda, A. Tavakoli, and H. Altug, “Nanophotonic Platforms for Enhanced Chiral Sensing,” ACS Photonics 5(7), 2669–2675 (2018).
[Crossref]

M. H. Alizadeh and Björn M. Reinhard, “Transverse Chiral Optical Forces by Chiral Surface Plasmon Polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

Y. Zhao, Amr A. E. Saleh, and J. A. Dionne, “Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 3(3), 304–309 (2016).
[Crossref]

M. Schaferling and H. Giessen, “Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2533–2534 (2018).
[Crossref]

Y. Zhao and J. Dionne, “Response to Comment on Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers,” ACS Photonics 5(6), 2535–2536 (2018).
[Crossref]

Adv. Opt. Mater. (1)

T. Cao, L. Mao, Y. Qiu, L. Lu, A. Banas, K. Banas, R. E. Simpson, and H.-C. Chui, “Fano Resonance in Asymmetric Plasmonic Nanostructure: Separation of Sub–10 nm Enantiomers,” Adv. Opt. Mater. 7(3), 1801172 (2018).
[Crossref]

Anal. Chem. (1)

T. L. Chester, “Recent Developments in High-Performance Liquid Chromatography Stationary Phases,” Anal. Chem. 85(2), 579–589 (2013).
[Crossref]

Appl. Phys. B (1)

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[Crossref]

Appl. Phys. Lett. (1)

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108(6), 061102 (2016).
[Crossref]

Biomed. Chromatogr. (1)

G. Hancu, M. Budau, D. L. Muntean, L. Gagyi, and A. Rusu, “Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview,” Biomed. Chromatogr. 32(11), e4335 (2018).
[Crossref]

Chem. Mater. (1)

H.-J. Jang, I. Jung, L. Zhang, S. Yoo, S. Lee, S. Cho, K. L. Shuford, and S. Park, “Asymmetric Ag Nanocrescents with Pt Rims: Wet-Chemical Synthesis and Optical Characterization,” Chem. Mater. 29(12), 5364–5370 (2017).
[Crossref]

Chem. Rev. (1)

W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, and N. A. Kotov, “Chiral Inorganic Nanostructures,” Chem. Rev. 117(12), 8041–8093 (2017).
[Crossref]

Colloids Surf., B (1)

S. R. Aragon and D. K. Hahn, “Polarizability and Kerr constant of proteins by boundary element methods,” Colloids Surf., B 56(1-2), 19–25 (2007).
[Crossref]

Electrophoresis (1)

A. Sebestová and J. Petr, “Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters,” Electrophoresis 38(24), 3124–3129 (2017).
[Crossref]

IEEE Photonics J. (1)

S. A. Andronaki, W. Zhu, M. Yu. Leonov, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

J. Am. Chem. Soc. (2)

I. Paci, I. Szleifer, and M. A. Ratner, “Chiral Separation: Mechanism Modeling in Two-Dimensional Systems,” J. Am. Chem. Soc. 129(12), 3545–3555 (2007).
[Crossref]

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “Superchiral Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures,” J. Am. Chem. Soc. 137(26), 8380–8383 (2015).
[Crossref]

J. Chromatogr. A (2)

G. K. E. Scriba, “Chiral recognition in separation science – an update,” J. Chromatogr. A 1467, 56–78 (2016).
[Crossref]

R. S. Hegade, M. De Beer, and F. Lynen, “Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers,” J. Chromatogr. A 1515, 109–117 (2017).
[Crossref]

J. Math. Phys. (1)

D. Lipkin, “Existence of a New Conservation Law in Electromagnetic Theory,” J. Math. Phys. 5(5), 696–700 (1964).
[Crossref]

J. Phys. Chem. Lett. (1)

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantenna,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50(47), 474004 (2017).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. Carretero, P. Acebal, and S. Blaya, “Chiral Rayleigh particles discrimination in dynamic dual optical traps,” J. Quant. Spectrosc. Radiat. Transfer 201, 209–215 (2017).
[Crossref]

Microsyst. Nanoeng. (1)

T. Cao, L. Tian, H. Liang, and K.-R. Qin, “Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability,” Microsyst. Nanoeng. 4(1), 7 (2018).
[Crossref]

Nano Lett. (4)

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref]

Y. Chen, J. Gao, and X. Yang, “Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking,” Nano Lett. 18(1), 520–527 (2018).
[Crossref]

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref]

J. Garcá-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays,” Nano Lett. 18(10), 6279–6285 (2018).
[Crossref]

Nanoscale (1)

T. Cao and Y. Qiu, “Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region,” Nanoscale 10(2), 566–574 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

S.-W. Chen, Y.-H. Huang, B.-K. Chao, C.-H. Hsueh, and J.-H. Li, “Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings,” Nanoscale Res. Lett. 9(1), 681 (2014).
[Crossref]

Nat. Commun. (4)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(1), 825 (2012).
[Crossref]

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5(1), 3577 (2014).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and Andrea Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Nat. Nanotechnol. (2)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref]

Y. Zhao, Amr A. E. Saleh, M. Anne van de Haar, B. Baum, J. A. Briggs, A. Lay, O. A. Reyes-Becerra, and J. A. Dionne, “Nanoscopic control and quantification of enantioselective optical forces,” Nat. Nanotechnol. 12(11), 1055–1059 (2017).
[Crossref]

New J. Phys. (2)

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Photonics Res. (1)

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photonics Res. 5(5), 441–449 (2017).
[Crossref]

Phys. Rev. A (2)

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A 83(2), 021803 (2011).
[Crossref]

J. S. Choi and M. Cho, “Limitations of a superchiral field,” Phys. Rev. A 86(6), 063834 (2012).
[Crossref]

Phys. Rev. B (4)

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

T. J. Davis and D. E. Gomez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90(23), 235424 (2014).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

S. J. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

Phys. Rev. Lett. (3)

A. Vázquez-Guardado and D. Chanda, “Superchiral Light Generation on Degenerate Achiral Surfaces,” Phys. Rev. Lett. 120(13), 137601 (2018).
[Crossref]

J. E. Vázquez-Lozano and A. Martínez, “Optical Chirality in Dispersive and Lossy Media,” Phys. Rev. Lett. 121(4), 043901 (2018).
[Crossref]

Y. Tang and A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

A. Hayat, J. P. Balthasar Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U. S. A. 112(43), 13190–13194 (2015).
[Crossref]

Sci. Rep. (4)

I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Completely Chiral Optical Force for Enantioseparation,” Sci. Rep. 6(1), 36884 (2016).
[Crossref]

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref]

I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral nanoparticles in singular light fields,” Sci. Rep. 7(1), 45925 (2017).
[Crossref]

X. Tian, Y. Fang, and M. Sun, “Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures,” Sci. Rep. 5(1), 17534 (2015).
[Crossref]

Science (1)

Y. Tang and A. E. Cohen, “Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light,” Science 332(6027), 333–336 (2011).
[Crossref]

Water Res. (1)

E. Sanganyado, Z. Lu, Q. Fu, D. Schlenk, and J. Gan, “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes,” Water Res. 124, 527–542 (2017).
[Crossref]

Other (1)

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, “Electromagnetic Waves in Chiral and Bi-isotropic Media,” 1st ed.; Artech House: London (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. a) Schematic representation of the plasmonic device formed by a periodic arrange of asymmetric PCM nanoapertures ($P$=400 nm, $t$=120 nm) on a dielectric substrate with refraction index of $\eta _{s}=1.45$. b) Unit cell formed by an asymmetric nanoaperture with CPL incident from below. Above the nanoaperture, the enantiomers R and S are inserted in a transverse plane. c) Front view of the unit cell with its geometrical parameters: outer radius ($R$), inner radius ($r$) and the asymmetry parameters $x$ and $y$.
Fig. 2.
Fig. 2. a) Trapping optical potential for L-CL as a function of $I_{\textbf {E}}$ for the non-magnetic enantiomers R and S and several angles $\theta _{i\textbf {E},\textbf {H}}$. Trapping optical potential for fixed $I_{\textbf {E}}=100$ as a function of chiral parameter $\kappa$ and several angles $\theta _{i\textbf {E},\textbf {H}}$ for b) L-CL and c) R-CL. The non-magnetic enantiomers satisfies the dual-symmetric conditions: $\epsilon _{r} \approx 1, \mu _{r} \approx 1$ with refractive index of the host medium of $\eta _m=1.59$.
Fig. 3.
Fig. 3. a) Differential optical potential $\Delta U_{X}$ as a function of $\Delta \hat {\mathcal {C}}$ for enantiomorphic (solid lines) and non-enantiomorphic (dotted lines) fields of an enantiomer with chirality parameter $|\kappa |=0.005; 0.01; 0.03; 0.05$ and differential field intensification $\Delta I_{\textbf {E}} = 50$. b) Achiral dissymmetry factor $g_a$ as a function of $\kappa$ for $\theta _{i\textbf {E},\textbf {H}}=0;0.5;1$ and c) Chiral dissymmetry factor $g_c$ for $\theta _{i\textbf {E},\textbf {H}}=1$ (maximum optical chirality) as a function of $\kappa$ for $\Delta I_{\textbf {E}} = 10, 20, 40$.
Fig. 4.
Fig. 4. a) Transmission spectrum of the asymmetric coaxial plasmonic nanoapertures ($R=100$ nm and $r=50$ nm) in 120 nm silver slab for various values of the asymmetry parameter $x$ and CPL. b) Transmission spectra of an asymmetric PCM nanoaperture with $x=50$ nm e $y=15$ nm when the incident light is circularly polarized to the left (L-CPL) and to the right (R-CPL) [below]; its spectra of CD transmission is shown above. c) Intensification of electric ($I_{\textbf {E}^{\pm }}$), magnetic ($I_{\textbf {H}^{\pm }}$) and chiral [$\cos (\theta _{i\textbf {E}^{\pm },\textbf {H}^{\pm }})$] near-field 5 nm away from the asymmetric PCM nanoaperture at $\lambda =798$ nm. The maximum intensification of the electric and magnetic fields for L-CPL in this plane are 144 and 16, respectively, and the maximum/minimum intrinsic optical chirality is $\pm 0.9$.
Fig. 5.
Fig. 5. a) Effect of the parameter $x$ on the maximum optical chirality of symmetric PCM nanoapertures for the higher resonance energy [$\lambda = 845$nm in Fig. 4]. b) Differential optical chirality as a function of the distance $z$ above the nanoaperture at $\lambda =798$ nm. c) Differential optical chirality created by an asymmetric PCM nanoaperture 5 nm above the nanoaperture with values $\Delta \hat {\mathcal {C}}_{min}=-1200$ and $\Delta \hat {\mathcal {C}}_{max}=+600$.
Fig. 6.
Fig. 6. Three-dimensional (3D) optical potential for (a) L-CPL and (b) R-CPL of an enantiomer S ($\kappa =0.005$) at 5nm above the asymmetric PCM nanoaperture. One-dimensional (1D) transverse optical potentials $U_{xy}$, where the cross sections are taken along (c) $y=75$ nm and (d) $x=106$ nm for L-CPL (black lines) and R-CPL (red lines) with equal FWHM = 6 nm of the trapping potential along the $x$ and $y$ direction. Enantioselective optical diagrams for chiral macromolecules with values of $\kappa$ between −0.05 and 0.05 for both (e) L-CPL and (f) R-CPL. In both cases, differences in the optical potentials belonging to R ($\kappa <0$) and S ($\kappa >0$) enantiomers provide passive enantioseparation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( p m ) = ( α i γ i γ β ) ( E H )
U X ± = α 4 E ± 2 β 4 H ± 2 + γ 2 E ± H ± cos ( θ i E ± , H ± )
C ^ ± = C ± | C o ± | = I E ± I H ± cos ( θ i E ± , H ± )
Δ U X = U X + U X = α 4 Δ E 2 β 4 Δ H 2 γ 2 ϵ m μ m E o 2 Δ C ^
g = Δ U X U = α 4 Δ E 2 β 4 Δ H 2 γ 2 ϵ m μ m E o 2 Δ C ^ α 4 E 2 β 4 H 2 γ 2 ϵ m μ m E o 2 C ^

Metrics