Abstract

Surface nano-gratings of different periods are fabricated on a Ga-doped ZnO (GaZnO) thin film with a high electron concentration for the study of their surface plasmon (SP) resonance behaviors in the near-infrared range. The dispersion curve of the surface plasmon polariton (SPP) based on the ellipsometry measurement of the GaZnO dielectric constant helps in designing the grating period for effective SPP excitation. Spectral depressions of grating reflection under certain incident polarization conditions, corresponding to SP resonance features, are observed in the wavelength range between 1400 and 2200 nm. From the numerical simulation of light scattering from a GaZnO grating structure based on the measured dielectric constant and the fitted Drude model, we can identify either SPP or localized SP modes among the observed SP resonance features. Essentially, it is difficult to excite below 1600 nm SPP at an air/GaZnO interface due to its lossy nature. The potential application of SP resonance on GaZnO is evaluated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors

Yu-Feng Yao, Shaobo Yang, Huang-Hui Lin, Keng-Ping Chou, Chi-Ming Weng, Jia-Yu Liao, Chun-Han Lin, Hao-Tsung Chen, Chia-Ying Su, Charng-Gan Tu, Yean-Woei Kiang, and C. C. Yang
Opt. Mater. Express 7(11) 4058-4072 (2017)

Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures

Hung-Lu Chen, Jyh-Yang Wang, Wen-Hung Chuang, Yean-Woei Kiang, and C. C. Yang
J. Opt. Soc. Am. B 26(5) 923-929 (2009)

Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries

Yu-Feng Yao, Chun-Han Lin, Chen-Yao Chao, Wen-Yen Chang, Chia-Ying Su, Charng-Gan Tu, Yean-Woei Kiang, and C. C. Yang
Opt. Express 26(7) 9205-9219 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref]
  2. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  3. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref]
  4. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
    [Crossref]
  5. N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
    [Crossref]
  6. J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
    [Crossref]
  7. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
    [Crossref]
  8. V. Babicheva, N. Kinsey, G. Naik, M. Ferrera, A. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
    [Crossref]
  9. L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
    [Crossref]
  10. M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref]
  11. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref]
  12. A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
    [Crossref]
  13. S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
    [Crossref]
  14. D. C. Look, K. D. Leedy, and D. L. Agresta, “Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and VZn in ZnO:Ga,” Appl. Phys. Lett. 104(24), 242107 (2014).
    [Crossref]
  15. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
    [Crossref]
  16. J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
    [Crossref]
  17. D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
    [Crossref]
  18. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
    [Crossref]
  19. C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
    [Crossref]
  20. Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
    [Crossref]
  21. Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
    [Crossref]
  22. Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
    [Crossref]
  23. Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
    [Crossref]
  24. C. H. Lin, C. G. Tu, H. S. Chen, C. Hsieh, C. Y. Chen, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction,” Opt. Express 21(15), 17686–17694 (2013).
    [Crossref]
  25. W. Y. Chang, Y. Kuo, C. C. Yang, and Y. W. Kiang, “Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application,” Plasmonics 13(6), 2293–2304 (2018).
    [Crossref]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  28. W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
    [Crossref]

2018 (3)

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

W. Y. Chang, Y. Kuo, C. C. Yang, and Y. W. Kiang, “Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application,” Plasmonics 13(6), 2293–2304 (2018).
[Crossref]

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

2017 (1)

2016 (2)

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

2015 (6)

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

2014 (1)

D. C. Look, K. D. Leedy, and D. L. Agresta, “Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and VZn in ZnO:Ga,” Appl. Phys. Lett. 104(24), 242107 (2014).
[Crossref]

2013 (6)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

V. Babicheva, N. Kinsey, G. Naik, M. Ferrera, A. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

C. H. Lin, C. G. Tu, H. S. Chen, C. Hsieh, C. Y. Chen, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction,” Opt. Express 21(15), 17686–17694 (2013).
[Crossref]

2012 (1)

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
[Crossref]

2011 (3)

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]

D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

2010 (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

2005 (1)

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

2003 (1)

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Agresta, D. L.

D. C. Look, K. D. Leedy, and D. L. Agresta, “Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and VZn in ZnO:Ga,” Appl. Phys. Lett. 104(24), 242107 (2014).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Atwater, H.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

Babicheva, V.

Bahoura, M.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
[Crossref]

Boltasseva, A.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

V. Babicheva, N. Kinsey, G. Naik, M. Ferrera, A. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boyd, R. W.

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Caspani, L.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Chambers, S. A.

D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
[Crossref]

Chang, T. W.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

Chang, W. Y.

W. Y. Chang, Y. Kuo, C. C. Yang, and Y. W. Kiang, “Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application,” Plasmonics 13(6), 2293–2304 (2018).
[Crossref]

Chen, C. C.

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

Chen, C. Y.

Chen, H. S.

Chen, H. T.

Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
[Crossref]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

Chen, S. H.

Chen, Y.

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Chou, K. P.

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
[Crossref]

Cleary, J. W.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

Clerici, M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

DeVault, C.

Di Falco, A.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Dondapati, H.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
[Crossref]

Dondapati, K.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Droubay, T. C.

D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
[Crossref]

Dutta, A.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Emani, N. K.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Faccio, D.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Ferrera, M.

Fujiwara, H.

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Garfunkel, E. L.

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Gavrilenko, A. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Gavrilenko, V. I.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Glembocki, O. J.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Guler, U.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Guo, J.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

Hendrickson, J. R.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

Henneberger, F.

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Holloway, T.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
[Crossref]

Hsieh, C.

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

C. H. Lin, C. G. Tu, H. S. Chen, C. Hsieh, C. Y. Chen, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction,” Opt. Express 21(15), 17686–17694 (2013).
[Crossref]

Hsieh, W. T.

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jiang, W.

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Kaipurath, R. P. M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Kalusniak, S.

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Khurgin, J. B.

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

Kiang, Y. W.

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

W. Y. Chang, Y. Kuo, C. C. Yang, and Y. W. Kiang, “Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application,” Plasmonics 13(6), 2293–2304 (2018).
[Crossref]

Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
[Crossref]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

C. H. Lin, C. G. Tu, H. S. Chen, C. Hsieh, C. Y. Chen, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction,” Opt. Express 21(15), 17686–17694 (2013).
[Crossref]

Kildishev, A. V.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Kim, J.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Kinsey, N.

Kondo, M.

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Kuo, Y.

W. Y. Chang, Y. Kuo, C. C. Yang, and Y. W. Kiang, “Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application,” Plasmonics 13(6), 2293–2304 (2018).
[Crossref]

Lavrinenko, A.

Leedy, K. D.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

D. C. Look, K. D. Leedy, and D. L. Agresta, “Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and VZn in ZnO:Ga,” Appl. Phys. Lett. 104(24), 242107 (2014).
[Crossref]

Leon, I. D.

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Liao, C. H.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

C. H. Lin, C. G. Tu, H. S. Chen, C. Hsieh, C. Y. Chen, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction,” Opt. Express 21(15), 17686–17694 (2013).
[Crossref]

Liao, J. Y.

Lin, C. H.

Lin, H. H.

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
[Crossref]

Liu, N.

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

Look, D. C.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

D. C. Look, K. D. Leedy, and D. L. Agresta, “Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and VZn in ZnO:Ga,” Appl. Phys. Lett. 104(24), 242107 (2014).
[Crossref]

D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
[Crossref]

Lu, Y.

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

McCloy, J. S.

D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
[Crossref]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]

Memarzadeh, B.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Mosallaei, H.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Mundle, R.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
[Crossref]

Muthukumar, S.

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Nader, N.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

Naik, G.

Naik, G. V.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ng, H. M.

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).

Pietrzyk, M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Pradhan, A. K.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
[Crossref]

Prokes, S. M.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Roger, T.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Sadofev, S.

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Schäfer, P.

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Shalaev, V. M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

V. Babicheva, N. Kinsey, G. Naik, M. Ferrera, A. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Su, C. Y.

Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
[Crossref]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

Su, M. Y.

Sun, G.

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

Tsai, D. P.

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

Tsai, M. C.

Tu, C. G.

Vangala, S.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]

Weng, C. M.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wu, P. C.

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

Wu, S. S.

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

Yang, C. C.

W. Y. Chang, Y. Kuo, C. C. Yang, and Y. W. Kiang, “Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application,” Plasmonics 13(6), 2293–2304 (2018).
[Crossref]

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
[Crossref]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

C. H. Lin, C. G. Tu, H. S. Chen, C. Hsieh, C. Y. Chen, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction,” Opt. Express 21(15), 17686–17694 (2013).
[Crossref]

Yang, S.

Yao, Y. F.

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang, “Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors,” Opt. Mater. Express 7(11), 4058–4072 (2017).
[Crossref]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[Crossref]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

Zhong, J.

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

Zhu, E.

Zhu, Z.

D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (2)

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[Crossref]

Y. F. Yao, K. P. Chou, H. H. Lin, C. C. Chen, Y. W. Kiang, and C. C. Yang, “Polarity control in growing highly Ga-doped ZnO nanowires with vapor-liquid-solid process,” ACS Appl. Mater. Interfaces 10(47), 40764–40772 (2018).
[Crossref]

ACS Photonics (2)

W. T. Hsieh, P. C. Wu, J. B. Khurgin, D. P. Tsai, N. Liu, and G. Sun, “Comparative analysis of metals and alternative infrared plasmonic materials,” ACS Photonics 5(7), 2541–2548 (2018).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

Appl. Phys. Lett. (4)

J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 83(16), 3401–3403 (2003).
[Crossref]

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett. 100(6), 061127 (2012).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

D. C. Look, K. D. Leedy, and D. L. Agresta, “Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and VZn in ZnO:Ga,” Appl. Phys. Lett. 104(24), 242107 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

IEEE Trans. Electron Devices (1)

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Devices 62(11), 3742–3749 (2015).
[Crossref]

J. Appl. Phys. (1)

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. Vac. Sci. Technol., A (1)

D. C. Look, T. C. Droubay, J. S. McCloy, Z. Zhu, and S. A. Chambers, “Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H,” J. Vac. Sci. Technol., A 29(3), 03A102 (2011).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (1)

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (1)

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Phys. Rev. Lett. (1)

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ɛ -near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Phys. Rev. X (1)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: First-principles theory and experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Plasmonics (1)

W. Y. Chang, Y. Kuo, C. C. Yang, and Y. W. Kiang, “Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application,” Plasmonics 13(6), 2293–2304 (2018).
[Crossref]

Science (2)

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a): Wavelength-dependent refractive index, n, (blue curve with the left ordinate) and extinction coefficient, k, (black curve with the right ordinate) of the GaZnO thin film based on ellipsometry measurement. (b): Real part, ɛ’, (blue continuous curve with the left ordinate) and imaginary part, ɛ”, (black continuous curve with the right ordinate) of the dielectric constant of the grown GaZnO thin film. Here, the red and green dashed curves are plotted for fitting the measured results of ɛ’ and ɛ” based on the Drude model.
Fig. 2.
Fig. 2. Continuous (dashed) blue curve on the right: Dispersion curve of SPP at the smooth air/GaZnO interface based on the measurement data (the fitted Drude model). “T” indicates the turning point of the dispersion curve. Continuous and dashed green curves on the left (Continuous and dashed red curves in the middle): Dispersion curves of SPP on an air/GaZnO interface grating structure with Λ1 = 750 nm (Λ2 = 1100 nm) based on the measurement data and the fitted Drude model, respectively. The slant dotted lines show the light lines in air with different incident angles, as labeled. The horizontal dashed lines and the intersection points labeled by “A” and “B” indicate the possible conditions for exciting SPP.
Fig. 3.
Fig. 3. Schematic illustration of the GaZnO nano-grating structure and the definitions of structure parameters and coordinate system. The incident angle with respect to the z-axis is defined as θ (φ) in the x-z (y-z) incidence plane.
Fig. 4.
Fig. 4. (a) and (b): Plane-view SEM images of the GaZnO grating of Λ1 = 750 nm with two different magnifications. (c): AFM image (3 µm x 3 µm in size) of the GaZnO grating of Λ1 = 750 nm. (d): Line-scan profile of the AFM image in part (c).
Fig. 5.
Fig. 5. (a)-(d): Results similar to Figs. 4(a)–4(d), respectively, for the GaZnO grating of Λ2 = 1100 nm.
Fig. 6.
Fig. 6. (a) and (b): Reflectance spectra of a GaZnO (GZO) thin-film structure (d = 300 nm) at various incident angles under the conditions of TE and TM polarizations, respectively. (c) [(d)]: Reflectance spectra of the GaZnO grating of Λ1 = 750 nm at different incident angles, θ (φ), under the TE- (TM-) polarized condition when light is incident in the x-z (y-z) plane.
Fig. 7.
Fig. 7. (a) [(b)]: Reflectance spectra of the GaZnO grating of Λ1 = 750 nm at different incident angles, θ (φ), under the TM- (TE-) polarized condition when light is incident in the x-z (y-z) plane. (c) and (d): Results similar to parts (a) and (b), respectively, for the GaZnO grating of Λ2 = 1100 nm. The vertical dashed lines indicate the wavelength of systematic perturbation caused by the change of grating set in the measurement system.
Fig. 8.
Fig. 8. (a) and (b): Simulation results of reflectance spectra at different incident angles under the conditions of TE- and TM-polarized incidences, respectively, from the air side of the GaZnO thin-film structure, corresponding to the experimental results shown in Figs. 6(a) and 6(b), respectively. (c) [(d)]: Simulated reflectance spectra of the GaZnO grating of Λ1 = 750 nm at different incident angles, θ (φ), under the TM- (TE-) polarized incidence condition when light is incident in the x-z (y-z) plane, corresponding to the experimental results shown in Fig. 7(a) [7(b)].
Fig. 9.
Fig. 9. (a1)-(a12): Charge distributions on the surface of the GaZnO grating with Λ1 = 750 nm at the wavelength of 1500 nm under the TM-polarized excitation when light is incident in the x-z plane at the incident angle of θ = 5 degrees. Parts (a1) through (a12) show the instantaneous charge distributions at the times t = jT/12 (j = 0-11), respectively, where T is the period of electromagnetic oscillation. The blue and red colors represent the opposite charges. (b1)-(b12): Results of charge distributions on the surface of the GaZnO grating with Λ1 = 750 nm similar to parts (a1)-(a12) except that the resonance wavelength is 1620 nm and the incident angle is θ = 60 degrees.
Fig. 10.
Fig. 10. (a) and (b): Distributions of electric field magnitude in the grating structure of Λ1 = 750 nm, corresponding to the cases in Figs. 9(a1)–9(a12) and 9(b1)–9(b12) at the wavelengths of 1500 and 1620 nm, respectively. (c) and (d): Distributions of electric field magnitude in the grating structure of Λ2 = 1100 nm, corresponding to the cases in Figs. 12(a1)–12(a12) and 12(b1)–12(b12) at the wavelengths of 1610 and 2030nm, respectively.
Fig. 11.
Fig. 11. (a) and (b): Simulated results similar to those in Figs. 8(c) and 8(d), respectively, for the GaZnO grating of Λ2 = 1100 nm.
Fig. 12.
Fig. 12. (a1)-(a12): Charge distributions on the surface of the GaZnO grating, similar to Figs. 9(a1)–9(a12), respectively, for the grating of Λ2 = 1100 nm at the wavelength of 1610 nm under the TM-polarized excitation when light is incident in the x-z plane at the incident angle of θ = 5 degrees. (b1)-(b12): Results of charge distributions on the surface of the GaZnO grating with Λ2 = 1100 nm, similar to parts (a1)-(a12) except that the resonance wavelength is 2030nm and the incident angle is θ = 45 degrees.
Fig. 13.
Fig. 13. (a): Real (with the left ordinate) and imaginary (with the right ordinate) parts of dielectric constants, i.e., ɛ’ and ɛ’’, respectively, of GaZnO, Au, and Ag. (b): SPP propagation lengths at the air/GaZnO, air/Au, and air/Ag interfaces. (c): Lateral penetration depths of SPP at the air/GaZnO, air/Au, and air/Ag interfaces on the air (with the left ordinate) and material (with the right ordinate) sides.
Fig. 14.
Fig. 14. (a): Experimental results of GaZnO absorption in the grating structure of Λ1 = 750 nm under the labelled four excitation conditions with the incident angle at 30 degrees. (b): Simulation results corresponding to the experimental data in part (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε+iε= (n+ik)2,
ε(ω)+iε(ω)=εωp2ω2+γ2+iγω(ωp2ω2+γ2).
ωp=(e2nomoε0)1/2
γ=emoμo.

Metrics