Abstract

In this work, we introduced a Nd:YGG single mode planar waveguide fabricated by swift heavy ion irradiation. The initial Kr8+ ions beam energy was 2.1 GeV, after passing through the Al foil the beam energy came to 30 MeV. The implantation fluence was 2×1012 ions/cm2. A well region with the refractive index increment in near the surface was obtained after ion irradiation. This index increment was attributed to the ion-induced electronic damage. The characterization of the optical planar waveguide in Nd:YGG crystal was tested by prism coupling and end face coupling method. The micro-luminescence and Raman properties of our ion-irradiation Nd:YGG crystal were investigated. This work has reference value for integrated optical devices on Nd:YGG crystal.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visible and near-infrared optical properties of a proton-implanted KTP waveguide

Yu-Fan Zhou, Peng Liu, Tao Liu, Lian Zhang, Xiao-Fei Yu, Tie-Jun Wang, Jin-Hua Zhao, and Xue-Lin Wang
Appl. Opt. 53(21) 4779-4783 (2014)

Waveguide and Raman spectroscopic visualization in C-implanted Ca0.20Ba0.80Nb2O6 crystal

Jin-Hua Zhao, Lian Zhang, and Xue-Lin Wang
Opt. Mater. Express 4(4) 864-869 (2014)

Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation

Yu-Jie Ma, Fei Lu, Xian-Bing Ming, Ming Chen, Xiu-Hong Liu, and Jiao-Jian Yin
Appl. Opt. 51(23) 5657-5663 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
    [Crossref]
  2. A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
    [Crossref]
  3. H. H. Yu, K. Wu, H. J. Zhang, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett. 36(7), 1281 (2011).
    [Crossref]
  4. H. H. Yu, S. X. Wang, S. Han, K. Wu, L. B. Su, H. J. Zhang, Z. P. Wang, J. Xu, and J. Y. Wang, “Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser,” Opt. Lett. 39(6), 1341 (2014).
    [Crossref]
  5. V. Monteseguro, M. Rathaiah, K. Linganna, A. D. Lozano-Gorrín, M. A. Hernández-Rodríguez, I. R. Martín, P. Babu, U. R. Rodríguez-Mendoza, F. J. Manjón, A. Muñoz, C. K. Jayasankar, V. Venkatramu, and V. Lavín, “Chemical pressure effects on the spectroscopic properties of Nd3+-doped gallium nano-garnets,” Opt. Mater. Express 5(8), 1661 (2015).
    [Crossref]
  6. Y. C. Jia, C. E. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
    [Crossref]
  7. Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
    [Crossref]
  8. M. Belotti, J. F. G. Lòpez, S. D. Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16(15), 11624–11636 (2008).
    [Crossref]
  9. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14(26), 12644 (2006).
    [Crossref]
  10. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  11. Y. C. Jia and F. Chen, “Compact solid-state waveguide lasers operating in the pulsed regime: a review,” Chin. Opt. Lett. 17(1), 012302 (2019).
    [Crossref]
  12. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref]
  13. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  14. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  15. J. Martínez de Mendívil, J. del Hoyo, J. Solís, and G. Lifante, “Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring,” Opt. Mater. 62, 353–356 (2016).
    [Crossref]
  16. F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  17. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  18. A. Y. Cho and J. R. Arthur, “molecular beam epitaxy,” Prog. Sol. Stat. Chem. 10(4446), 157–191 (1975).
    [Crossref]
  19. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC press, 2018).
  20. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [Crossref]
  21. T. Liu and W. J. Kong, “High near-infrared transmittance and waveguide structures in polycrystalline ZnSe by carbon and proton implantation combined with photolithography,” Opt. Commun. 423, 91–95 (2018).
    [Crossref]
  22. J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
    [Crossref]
  23. L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
    [Crossref]
  24. A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).
  25. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and N. Tadashi, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
    [Crossref]
  26. Y. Liu, Q. Huang, M. Qiao, X. L. Wang, and P. Liu, “Strontium titanate waveguide in visible and near-infrared regions induced by swift heavy Ni-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).
  27. J. H. Zhao, Q. Huang, P. Liu, and X. L. Wang, “An He-implanted optical planar waveguide in an Nd: YGG laser crystal preserving fluorescence properties,” Appl. Surf. Sci. 257(16), 7310–7313 (2011).
    [Crossref]
  28. J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
    [Crossref]
  29. J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
    [Crossref]
  30. M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
    [Crossref]
  31. V. Monteseguro, P. Rodríguez-Hernández, R. Vilaplana, F. J. Manjón, and A. Muñoz, “Lattice Dynamics Study of Nanocrystalline Yttrium Gallium Garnet at High Pressure,” J. Phys. Chem. C 118(24), 13177–13185 (2014).
    [Crossref]

2019 (1)

2018 (1)

T. Liu and W. J. Kong, “High near-infrared transmittance and waveguide structures in polycrystalline ZnSe by carbon and proton implantation combined with photolithography,” Opt. Commun. 423, 91–95 (2018).
[Crossref]

2017 (2)

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

2016 (1)

J. Martínez de Mendívil, J. del Hoyo, J. Solís, and G. Lifante, “Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring,” Opt. Mater. 62, 353–356 (2016).
[Crossref]

2015 (3)

2014 (5)

H. H. Yu, S. X. Wang, S. Han, K. Wu, L. B. Su, H. J. Zhang, Z. P. Wang, J. Xu, and J. Y. Wang, “Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser,” Opt. Lett. 39(6), 1341 (2014).
[Crossref]

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

V. Monteseguro, P. Rodríguez-Hernández, R. Vilaplana, F. J. Manjón, and A. Muñoz, “Lattice Dynamics Study of Nanocrystalline Yttrium Gallium Garnet at High Pressure,” J. Phys. Chem. C 118(24), 13177–13185 (2014).
[Crossref]

J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
[Crossref]

2013 (2)

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

Y. C. Jia, C. E. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
[Crossref]

2012 (1)

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2011 (3)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

H. H. Yu, K. Wu, H. J. Zhang, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett. 36(7), 1281 (2011).
[Crossref]

J. H. Zhao, Q. Huang, P. Liu, and X. L. Wang, “An He-implanted optical planar waveguide in an Nd: YGG laser crystal preserving fluorescence properties,” Appl. Surf. Sci. 257(16), 7310–7313 (2011).
[Crossref]

2010 (1)

2008 (1)

2007 (2)

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

2006 (1)

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

1976 (1)

A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
[Crossref]

1975 (1)

A. Y. Cho and J. R. Arthur, “molecular beam epitaxy,” Prog. Sol. Stat. Chem. 10(4446), 157–191 (1975).
[Crossref]

Agulló-López, F.

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

Agulló-Rueda, F.

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

Akhmadaliev, S.

Aldana, J. R. V.

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Andreani, L. C.

Angelis, S. D.

Aralbayeva, G.

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Arthur, J. R.

A. Y. Cho and J. R. Arthur, “molecular beam epitaxy,” Prog. Sol. Stat. Chem. 10(4446), 157–191 (1975).
[Crossref]

Babu, P.

Bagdasarov, K. S.

A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
[Crossref]

Bai, Y.

Belotti, M.

Benayas, A.

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and N. Tadashi, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[Crossref]

Bettiol, A. A.

Bogomolova, G. A.

A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
[Crossref]

Carrascosa, M.

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

Chandler, P. J.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

Chen, F.

Chen, Y.

Chiang, K. S.

Cho, A. Y.

A. Y. Cho and J. R. Arthur, “molecular beam epitaxy,” Prog. Sol. Stat. Chem. 10(4446), 157–191 (1975).
[Crossref]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Dauletbekova, A.

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

del Hoyo, J.

J. Martínez de Mendívil, J. del Hoyo, J. Solís, and G. Lifante, “Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring,” Opt. Mater. 62, 353–356 (2016).
[Crossref]

del Rosal, B.

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Dong, N. N.

Du, J.

J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
[Crossref]

Fu, G.

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
[Crossref]

Galli, M.

Garcia, G.

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

García-Cabañes, A.

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

Garcia-Navarro, A.

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

Gritsenko, M. M.

A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Guan, J.

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Han, S.

Hernández-Rodríguez, M. A.

Hirata, G. A.

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Huang, Q.

J. H. Zhao, Q. Huang, P. Liu, and X. L. Wang, “An He-implanted optical planar waveguide in an Nd: YGG laser crystal preserving fluorescence properties,” Appl. Surf. Sci. 257(16), 7310–7313 (2011).
[Crossref]

Y. Liu, Q. Huang, M. Qiao, X. L. Wang, and P. Liu, “Strontium titanate waveguide in visible and near-infrared regions induced by swift heavy Ni-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Janse van Vuuren, A.

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Jaque, D.

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and N. Tadashi, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[Crossref]

Jayasankar, C. K.

Jia, Y. C.

Jiang, M. H.

Jiao, Y.

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
[Crossref]

Kar, A. K.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Kip, D.

Kong, W. J.

T. Liu and W. J. Kong, “High near-infrared transmittance and waveguide structures in polycrystalline ZnSe by carbon and proton implantation combined with photolithography,” Opt. Commun. 423, 91–95 (2018).
[Crossref]

Kuzyk, M. G.

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC press, 2018).

Lavín, V.

Lifante, G.

J. Martínez de Mendívil, J. del Hoyo, J. Solís, and G. Lifante, “Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring,” Opt. Mater. 62, 353–356 (2016).
[Crossref]

Linganna, K.

Liu, P.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

J. H. Zhao, Q. Huang, P. Liu, and X. L. Wang, “An He-implanted optical planar waveguide in an Nd: YGG laser crystal preserving fluorescence properties,” Appl. Surf. Sci. 257(16), 7310–7313 (2011).
[Crossref]

Y. Liu, Q. Huang, M. Qiao, X. L. Wang, and P. Liu, “Strontium titanate waveguide in visible and near-infrared regions induced by swift heavy Ni-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Liu, Q.

Liu, T.

T. Liu and W. J. Kong, “High near-infrared transmittance and waveguide structures in polycrystalline ZnSe by carbon and proton implantation combined with photolithography,” Opt. Commun. 423, 91–95 (2018).
[Crossref]

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

Liu, Y.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

Y. Liu, Q. Huang, M. Qiao, X. L. Wang, and P. Liu, “Strontium titanate waveguide in visible and near-infrared regions induced by swift heavy Ni-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Lòpez, J. F. G.

Lor, K. P.

Lozano-Gorrín, A. D.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Maksymov, I.

Manjón, F. J.

Martín, I. R.

Martínez de Mendívil, J.

J. Martínez de Mendívil, J. del Hoyo, J. Solís, and G. Lifante, “Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring,” Opt. Mater. 62, 353–356 (2016).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Monteseguro, V.

Muñoz, A.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

O’Connell, J. H.

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Olivares, J.

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

Pérez-Delgado, A.

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Peyrade, D.

Qiao, M.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

Y. Liu, Q. Huang, M. Qiao, X. L. Wang, and P. Liu, “Strontium titanate waveguide in visible and near-infrared regions induced by swift heavy Ni-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Qin, X. F.

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
[Crossref]

Qiu, F.

Rathaiah, M.

Ren, Y. Y.

Rodríguez-Hernández, P.

V. Monteseguro, P. Rodríguez-Hernández, R. Vilaplana, F. J. Manjón, and A. Muñoz, “Lattice Dynamics Study of Nanocrystalline Yttrium Gallium Garnet at High Pressure,” J. Phys. Chem. C 118(24), 13177–13185 (2014).
[Crossref]

Rodríguez-Mendoza, U. R.

Rüter, C. E.

Saifulin, M. M.

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Santacruz-Gómez, K.

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Shang, Z.

Skuratov, V. A.

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Solís, J.

J. Martínez de Mendívil, J. del Hoyo, J. Solís, and G. Lifante, “Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring,” Opt. Mater. 62, 353–356 (2016).
[Crossref]

Song, H. L.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

Su, L. B.

Sun, J. R.

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

Tadashi, N.

Tan, Y.

Townsend, P. D.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

Vanga, S. K.

Venkatramu, V.

Vetrone, F.

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Vilaplana, R.

V. Monteseguro, P. Rodríguez-Hernández, R. Vilaplana, F. J. Manjón, and A. Muñoz, “Lattice Dynamics Study of Nanocrystalline Yttrium Gallium Garnet at High Pressure,” J. Phys. Chem. C 118(24), 13177–13185 (2014).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Vylegzhanin, D. N.

A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
[Crossref]

Wang, F. X.

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
[Crossref]

Wang, J. Y.

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Wang, S. X.

Wang, T. J.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

Wang, X. L.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

J. H. Zhao, Q. Huang, P. Liu, and X. L. Wang, “An He-implanted optical planar waveguide in an Nd: YGG laser crystal preserving fluorescence properties,” Appl. Surf. Sci. 257(16), 7310–7313 (2011).
[Crossref]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Y. Liu, Q. Huang, M. Qiao, X. L. Wang, and P. Liu, “Strontium titanate waveguide in visible and near-infrared regions induced by swift heavy Ni-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Wang, Z. G.

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

Wang, Z. P.

Wu, K.

Xu, J.

Yu, H. H.

Zdorovets, M.

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Zhang, H. J.

Zhang, J.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

Zhang, L.

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

Zhao, J. H.

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
[Crossref]

J. H. Zhao, Q. Huang, P. Liu, and X. L. Wang, “An He-implanted optical planar waveguide in an Nd: YGG laser crystal preserving fluorescence properties,” Appl. Surf. Sci. 257(16), 7310–7313 (2011).
[Crossref]

Zhou, S. Q.

Zhou, Y. F.

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

Adv. Opt. Mater. (1)

A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “Lattice damage and waveguide properties of medium and high-energy C3+ ions irradiated LaAlO3 crystals,” Appl. Phys. B: Lasers Opt. 123(1), 19 (2017).
[Crossref]

Appl. Surf. Sci. (1)

J. H. Zhao, Q. Huang, P. Liu, and X. L. Wang, “An He-implanted optical planar waveguide in an Nd: YGG laser crystal preserving fluorescence properties,” Appl. Surf. Sci. 257(16), 7310–7313 (2011).
[Crossref]

Chin. Opt. Lett. (1)

J. Appl. Phys. (1)

J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

J. Phys. Chem. C (1)

V. Monteseguro, P. Rodríguez-Hernández, R. Vilaplana, F. J. Manjón, and A. Muñoz, “Lattice Dynamics Study of Nanocrystalline Yttrium Gallium Garnet at High Pressure,” J. Phys. Chem. C 118(24), 13177–13185 (2014).
[Crossref]

Laser Photonics Rev. (3)

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (3)

L. Zhang, P. Liu, T. Liu, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Planar waveguide structure formed on Nd:YVO4 by Kr8+ ion irradiation at ultralow fluences,” Nucl. Instrum. Methods Phys. Res., Sect. B 315(6), 321–324 (2013).
[Crossref]

J. H. Zhao, J. Du, F. X. Wang, X. F. Qin, and G. Fu, “Planar Nd:YGG waveguide fabrication by multiple energy He ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 326, 95–98 (2014).
[Crossref]

J. H. Zhao, X. F. Qin, F. X. Wang, Y. Jiao, J. Guan, and G. Fu, “The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 409, 163–166 (2017).
[Crossref]

Opt. Commun. (1)

T. Liu and W. J. Kong, “High near-infrared transmittance and waveguide structures in polycrystalline ZnSe by carbon and proton implantation combined with photolithography,” Opt. Commun. 423, 91–95 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (2)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

J. Martínez de Mendívil, J. del Hoyo, J. Solís, and G. Lifante, “Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring,” Opt. Mater. 62, 353–356 (2016).
[Crossref]

Opt. Mater. Express (2)

Phys. Stat. Sol. (1)

A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, and M. M. Gritsenko, “Spectroscopic properties of Nd3+ ions in garnet compounds forming in the Y2O3-Ga2O3 system,” Phys. Stat. Sol. 38(1), 409–422 (1976).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Prog. Sol. Stat. Chem. (1)

A. Y. Cho and J. R. Arthur, “molecular beam epitaxy,” Prog. Sol. Stat. Chem. 10(4446), 157–191 (1975).
[Crossref]

Other (4)

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC press, 2018).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

Y. Liu, Q. Huang, M. Qiao, X. L. Wang, and P. Liu, “Strontium titanate waveguide in visible and near-infrared regions induced by swift heavy Ni-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

A. Janse van Vuuren, M. M. Saifulin, V. A. Skuratov, J. H. O’Connell, G. Aralbayeva, A. Dauletbekova, and M. Zdorovets, “The influence of stopping power and temperature on latent track formation in YAP and YAG,” Nucl. Instrum. Methods Phys. Res. B , in press (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Reflective light intensity (TM polarized) reflected from the prism versus effective refractive index profile (a) 633 nm; (b) 1539 nm.
Fig. 2.
Fig. 2. Microscopic photograph of the cross-sections of the Nd:YGG waveguides with Kr8+ irradiation at a influence of 2×1012 ions/cm2
Fig. 3.
Fig. 3. (a) Electronic and nuclear energy loss simulated by the stopping and range of ions in matter (SRIM) 2010 program for Kr8+ ions irradiated into the Nd:YGG crystal; (b) calculated refractive index profile.
Fig. 4.
Fig. 4. The near-filed light intensity profile of Nd:YGG planner waveguide measured by end face coupling method at the wavelength of 633 nm (a) experimentally and (b) simulated by assuming the refractive index profile (Fig. 3(b)).
Fig. 5.
Fig. 5. The micro-luminescence emission spectra of Nd3+ ions for transition4F3/24I9/2 at room temperature, (b) is normalized spectra by use of (a).
Fig. 6.
Fig. 6. The Raman spectrum of Nd:YGG with a laser excitation wavelength of 633 nm.

Metrics