Abstract

Drawing chalcogenide glass microstructured optical fibers efficiently requires a good understanding of the different drawing conditions beforehand, due to the high cost of the chalcogenide glass materials. A simulation based on Stokes’ model that includes pressurization and glass surface tension is validated with respect to drawing a Ge$_{28}$Sb$_{12}$Se$_{60}$ chalcogenide glass single hole capillary, as well as microstructured optical fiber with three holes, with different pressurizations. Suspended-core Ge$_{28}$Sb$_{12}$Se$_{60}$ fibers with bridges just hundreds of nanometer wide are drawn using parameters predicted by the simulations. These fibers should be suitable for applications such as generating mid-infrared (MIR) supercontinuum based on chalcogenide glasses.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization

Gregory T. Jasion, John R. Hayes, Natalie V. Wheeler, Yong Chen, Thomas D. Bradley, David J. Richardson, and Francesco Poletti
Opt. Express 27(15) 20567-20582 (2019)

MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti
Opt. Express 23(1) 312-329 (2015)

Studying the limits of production rate and yield for the volume manufacturing of hollow core photonic band gap fibers

Gregory T. Jasion, Eric Numkam Fokoua, John S. Shrimpton, David J. Richardson, and Francesco Poletti
Opt. Express 23(25) 32179-32190 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Mohsin, M. S. Alam, D. M. N. Hasan, and M. N. Hossain, “Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber,” Appl. Opt. 50(25), E102–E107 (2011).
    [Crossref]
  2. J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.
  3. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 µm,” Opt. Lett. 36(15), 2859–2861 (2011).
    [Crossref]
  4. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
    [Crossref]
  5. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
    [Crossref]
  6. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref]
  7. B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, , et al., “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
    [Crossref]
  8. O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
    [Crossref]
  9. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [Crossref]
  10. X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
    [Crossref]
  11. H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express 1(2), 234–242 (2011).
    [Crossref]
  12. J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers- fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
    [Crossref]
  13. A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
    [Crossref]
  14. G. Luzi, P. Epple, C. Rauh, and A. Delgado, “Study of the effects of inner pressure and surface tension on the fibre drawing process with the aid of an analytical asymptotic fibre drawing model and the numerical solution of the full N.-St. equations,” Arch. Appl. Mech. 83(11), 1607–1636 (2013).
    [Crossref]
  15. C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical modeling of the self-pressurizing mechanism for microstructured fiber drawing,” J. Lightwave Technol. 27(7), 871–878 (2009).
    [Crossref]
  16. R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol. 24(11), 4304–4313 (2006).
    [Crossref]
  17. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [Crossref]
  18. Y. Stokes, P. Buchak, D. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
    [Crossref]
  19. M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
    [Crossref]
  20. Y. Chen and T. A. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Opt. Mater. Express 3(3), 346–356 (2013).
    [Crossref]
  21. http://www.irradianceglass.com/ .
  22. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express 2(3), 304–320 (2012).
    [Crossref]
  23. https://www.vitron.de/english/IR-Glaeser/Kurzvorstellung.php .
  24. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
    [Crossref]
  25. N. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
    [Crossref]
  26. H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
    [Crossref]
  27. W. Wei, L. Fang, X. Shen, and R. Wang, “Crystallization kinetics and thermal stability in Ge-Sb-Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
    [Crossref]
  28. S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
    [Crossref]
  29. S. Wu, S. Fleming, B. T. Kuhlmey, J. G. Hayashi, H. Ebendorff-Heidepriem, and A. Stefani, “Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glass,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (Optical Society of America, 2018), p. JTu5A.69.
  30. https://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml .

2018 (1)

2017 (3)

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (3)

2013 (4)

W. Wei, L. Fang, X. Shen, and R. Wang, “Crystallization kinetics and thermal stability in Ge-Sb-Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

G. Luzi, P. Epple, C. Rauh, and A. Delgado, “Study of the effects of inner pressure and surface tension on the fibre drawing process with the aid of an analytical asymptotic fibre drawing model and the numerical solution of the full N.-St. equations,” Arch. Appl. Mech. 83(11), 1607–1636 (2013).
[Crossref]

Y. Chen and T. A. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Opt. Mater. Express 3(3), 346–356 (2013).
[Crossref]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref]

2012 (2)

2011 (4)

2009 (1)

2007 (1)

2006 (2)

R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol. 24(11), 4304–4313 (2006).
[Crossref]

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers- fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[Crossref]

2002 (1)

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

1958 (1)

N. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
[Crossref]

Adam, J. L.

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Alam, M. S.

Amrani, F.

Bang, O.

Bartá, J.

S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
[Crossref]

Benson, T. M.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

Bigot, L.

Birks, T. A.

Bjarklev, A.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers- fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[Crossref]

Bouazaoui, M.

Bourdon, P.

Bouwmans, G.

Boyd, K.

Bramerie, L.

Brilland, L.

Buchak, P.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

Y. Stokes, P. Buchak, D. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Caillaud, C.

Canat, G.

Capoen, B.

Chartier, T.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Chen, M. J.

Chen, P.

Chen, Y.

Cheng, T.

Coulombier, Q.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 µm,” Opt. Lett. 36(15), 2859–2861 (2011).
[Crossref]

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Crowdy, D.

Y. Stokes, P. Buchak, D. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Crowdy, D. G.

Dai, S.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Delgado, A.

G. Luzi, P. Epple, C. Rauh, and A. Delgado, “Study of the effects of inner pressure and surface tension on the fibre drawing process with the aid of an analytical asymptotic fibre drawing model and the numerical solution of the full N.-St. equations,” Arch. Appl. Mech. 83(11), 1607–1636 (2013).
[Crossref]

Deng, D.

Désévédavy, F.

Dowler, A.

Duan, Z.

Duhant, M.

e Silva, M. C.

Ebendorff-Heidepriem, H.

El Amraoui, M.

El Hamzaoui, H.

Epple, P.

G. Luzi, P. Epple, C. Rauh, and A. Delgado, “Study of the effects of inner pressure and surface tension on the fibre drawing process with the aid of an analytical asymptotic fibre drawing model and the numerical solution of the full N.-St. equations,” Arch. Appl. Mech. 83(11), 1607–1636 (2013).
[Crossref]

Fang, L.

W. Wei, L. Fang, X. Shen, and R. Wang, “Crystallization kinetics and thermal stability in Ge-Sb-Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Fatome, J.

Fitt, A.

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Fitt, A. D.

Fleming, S.

S. Wu, S. Fleming, B. T. Kuhlmey, J. G. Hayashi, H. Ebendorff-Heidepriem, and A. Stefani, “Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glass,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (Optical Society of America, 2018), p. JTu5A.69.

Foo, H. T.

Furniss, D.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

Furusawa, K.

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Gadret, G.

Gai, X.

Gao, W.

Gay, M.

Guo, F.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Han, X.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Hasan, D. M. N.

Hayashi, J. G.

S. Wu, S. Fleming, B. T. Kuhlmey, J. G. Hayashi, H. Ebendorff-Heidepriem, and A. Stefani, “Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glass,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (Optical Society of America, 2018), p. JTu5A.69.

Hayes, J. R.

Hossain, M. N.

Jules, J.-C.

Kawashima, H.

Kibler, B.

Kostál, P.

S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
[Crossref]

Kostecki, R.

Kubat, I.

Kuhlmey, B. T.

S. Wu, S. Fleming, B. T. Kuhlmey, J. G. Hayashi, H. Ebendorff-Heidepriem, and A. Stefani, “Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glass,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (Optical Society of America, 2018), p. JTu5A.69.

Lægsgaard, J.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers- fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[Crossref]

Le, S. D.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Lenglé, K.

Liao, M.

Liu, Z.

Luo, B.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Luther-Davies, B.

Luzi, G.

G. Luzi, P. Epple, C. Rauh, and A. Delgado, “Study of the effects of inner pressure and surface tension on the fibre drawing process with the aid of an analytical asymptotic fibre drawing model and the numerical solution of the full N.-St. equations,” Arch. Appl. Mech. 83(11), 1607–1636 (2013).
[Crossref]

Malek, J.

S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
[Crossref]

Martinková, S.

S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
[Crossref]

Mechin, D.

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Méchin, D.

Messaddeq, Y.

Mi, N.

Mohsin, K. M.

Møller, U.

Monro, T.

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Monro, T. M.

Mouawad, O.

Munch, J.

Neate, N. C.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

Nguyen, D. M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Nguyen, T. N.

Ohishi, Y.

Parikh, N.

N. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
[Crossref]

Parnell, H.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

Petersen, C. R.

Picot-Clémente, J.

Please, C.

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Rauh, C.

G. Luzi, P. Epple, C. Rauh, and A. Delgado, “Study of the effects of inner pressure and surface tension on the fibre drawing process with the aid of an analytical asymptotic fibre drawing model and the numerical solution of the full N.-St. equations,” Arch. Appl. Mech. 83(11), 1607–1636 (2013).
[Crossref]

Razdobreev, I.

Renard, W.

Renversez, G.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 µm,” Opt. Lett. 36(15), 2859–2861 (2011).
[Crossref]

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Richardson, D.

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Seddon, A. B.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

Segawa, H.

S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
[Crossref]

Shen, X.

Smektala, F.

Stefani, A.

S. Wu, S. Fleming, B. T. Kuhlmey, J. G. Hayashi, H. Ebendorff-Heidepriem, and A. Stefani, “Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glass,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (Optical Society of America, 2018), p. JTu5A.69.

Stokes, Y.

Y. Stokes, P. Buchak, D. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Stokes, Y. M.

Strutynski, C.

Suzuki, T.

Tang, Z.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

Thual, M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Tian, Y.

Toupin, P.

Troles, J.

Voyce, C. J.

Wang, R.

W. Wei, L. Fang, X. Shen, and R. Wang, “Crystallization kinetics and thermal stability in Ge-Sb-Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Wang, X.

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, , et al., “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Wang, Y.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Warren-Smith, S. C.

Wei, W.

W. Wei, L. Fang, X. Shen, and R. Wang, “Crystallization kinetics and thermal stability in Ge-Sb-Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Wu, B.

Wu, S.

S. Wu, S. Fleming, B. T. Kuhlmey, J. G. Hayashi, H. Ebendorff-Heidepriem, and A. Stefani, “Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glass,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (Optical Society of America, 2018), p. JTu5A.69.

Wynne, R. M.

Xu, D.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Xu, P.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Xue, Z.

You, C.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Yu, Y.

Zhang, P.

B. Wu, Z. Zhao, X. Wang, Y. Tian, N. Mi, P. Chen, Z. Xue, Z. Liu, P. Zhang, X. Shen, , et al., “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Zhao, Z.

Appl. Opt. (1)

Arch. Appl. Mech. (1)

G. Luzi, P. Epple, C. Rauh, and A. Delgado, “Study of the effects of inner pressure and surface tension on the fibre drawing process with the aid of an analytical asymptotic fibre drawing model and the numerical solution of the full N.-St. equations,” Arch. Appl. Mech. 83(11), 1607–1636 (2013).
[Crossref]

J. Am. Ceram. Soc. (3)

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers- fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[Crossref]

N. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
[Crossref]

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2017).
[Crossref]

J. Eng. Math. (1)

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

J. Fluid Mech. (1)

Y. Stokes, P. Buchak, D. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. Chem. B (1)

S. Martinková, J. Bartá, P. Kośtál, J. Malek, and H. Segawa, “Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films,” J. Phys. Chem. B 121(33), 7978–7986 (2017).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (7)

Phys. Status Solidi B (1)

W. Wei, L. Fang, X. Shen, and R. Wang, “Crystallization kinetics and thermal stability in Ge-Sb-Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Other (5)

https://www.vitron.de/english/IR-Glaeser/Kurzvorstellung.php .

http://www.irradianceglass.com/ .

S. Wu, S. Fleming, B. T. Kuhlmey, J. G. Hayashi, H. Ebendorff-Heidepriem, and A. Stefani, “Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glass,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (Optical Society of America, 2018), p. JTu5A.69.

https://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml .

J. Troles, L. Brilland, P. Toupin, Q. Coulombier, S. D. Le, D. M. Nguyen, M. Thual, T. Chartier, G. Renversez, D. Mechin, and J. L. Adam, “Chalcogenide suspended-core fibers: Manufacturing and non-linear properties at 1.55 µm,” in 2011 13th International Conference on Transparent Optical Networks, (2011), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Temperature profile of the glass preform (solid line), and at the center of the furnace (dotted line), when the furnace temperature was set to be 325 °C (blue) and 345 °C (red) as a function of the position along the furnace. (b) Results of the surface tension measurements with IG5 glass rods of various sizes.
Fig. 2.
Fig. 2. Process flow chart of fabrication of IG5 microstructured cane: (a) glass billet, (b) extruded tube, (c) glass capillaries, (d) preform, (e) microstructured cane.
Fig. 3.
Fig. 3. (a-f) Cross-section microscope images of the capillary when drawn with different pressurizations. (g) Experimental (black crosses) and simulated (red filled squares) air fraction of the capillary when drawn with different pressurizations.
Fig. 4.
Fig. 4. Schematic diagram of drawing the three-hole cane when holes act as independent entities (a-d) or single entity (e-h) case: (a) and (e) cross-section of the preform, (b) and (f) input parameters of the simulation, (c) and (g) output parameters of the simulation, (d) and (h) resulting structure. D is the drawing ratio.
Fig. 5.
Fig. 5. (a-f) Cross-section microscope images of the MOF when drawn with different pressurizations. (g) Experimental and simulated air fraction of the three-holes cane drawn with different pressurizations. Black crosses: experimental air fraction; blue filled squares: simulated air fraction when considering each hole as independent; red filled circles: simulated air fraction when considering holes acting as a single entity.
Fig. 6.
Fig. 6. Schematic of the cross-section when the introduced pressurization is: (a) smaller than the threshold, (b) at about the threshold, (c) larger then the threshold, and the normalized air fraction = 1. C$_1$ is the normalized excircle, while C$_2$ is the excircle of the holes.
Fig. 7.
Fig. 7. Optical microscope images of different IG5 glass suspended-core fibers’ cross sections.
Fig. 8.
Fig. 8. (a) IG5 glass materials dispersion, (b) the simulated fundamental mode dispersion with different core diameters $d$ of IG5 glass suspended-core fibers.

Tables (1)

Tables Icon

Table 1. Parameters for the fabrication of IG5 glass suspended-core fibers

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α0=α(ρ0),αL=α(ρL),whereα(ρ)=1π1ρ1+ρ.
ρL=1παL21+παL2.
dαdτ=1218πα(1π2α4)Pχ,
dχdτ=16χαT,
A0=πR02(1ρ02),AL=πRL2(1ρL2)
σ=6γA0T,
P=γA0P,
[D(τL2α0+1)1/3]1+(R3Mα0)1[(τL2α0+1)2/31]log[D(τL2α0+1)1/3]=1,
σ=6πUfr2μln(Uf/Ud)L,
logμ=41.2+29702/(T+273.15).
γ=mgπr

Metrics