Abstract

We report fabrication of three-dimensional (3D) high aspect ratio microchannels from the rear-surface of thick silica glass with femtosecond laser pulses. To avoid nonlinear self-focusing in the conventional focusing scheme which leads to intensity clamping in the interaction of the ultrafast laser pulses with the silica glass, simultaneous spatiotemporal focusing is employed which gives rise to high aspect ratio (∼30) straight and curved microchannels in 10 mm thick silica glass substrates.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses

Ran An, Yan Li, Yanping Dou, Hong Yang, and Qihuang Gong
Opt. Express 13(6) 1855-1859 (2005)

High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains

Lan Jiang, Pengjun Liu, Xueliang Yan, Ni Leng, Chuancai Xu, Hai Xiao, and Yongfeng Lu
Opt. Lett. 37(14) 2781-2783 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
    [Crossref]
  2. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  3. A. Manz and H. Becker, “Microsystem technology in chemistry and life sciences,” Springer Science & Business Media (2003).
  4. J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in biology and medicine,” Annu. Rev. Biomed. Eng. 1(1), 401–425 (1999).
    [Crossref]
  5. Y. Cheng, “Internal laser writing of high-aspect-ratio microfluidic structures in silicate glasses for Lab-on-a-Chip applications,” Micromachines 8(2), 59 (2017).
    [Crossref]
  6. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref]
  7. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref]
  8. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
    [Crossref]
  9. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
    [Crossref]
  10. A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
    [Crossref]
  11. Y. Li, K. Itoh, W. Watanable, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26(23), 1912–1914 (2001).
    [Crossref]
  12. R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
    [Crossref]
  13. Y. Li and S. Qu, “Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array,” Opt. Lett. 36(21), 4236–4238 (2011).
    [Crossref]
  14. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
    [Crossref]
  15. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
    [Crossref]
  16. B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
    [Crossref]
  17. C. G. Durfee, M. Greco, E. Block, D. Vitek, and J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express 20(13), 14244–14259 (2012).
    [Crossref]
  18. C. Jing, Z. Wang, and Y. Cheng, “Characteristics and applications of spatiotemporally focused femtosecond laser pulses,” Appl. Sci. 6(12), 428 (2016).
    [Crossref]
  19. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010).
    [Crossref]
  20. R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855–1859 (2005).
    [Crossref]
  21. X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
    [Crossref]

2019 (1)

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

2017 (1)

Y. Cheng, “Internal laser writing of high-aspect-ratio microfluidic structures in silicate glasses for Lab-on-a-Chip applications,” Micromachines 8(2), 59 (2017).
[Crossref]

2016 (2)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

C. Jing, Z. Wang, and Y. Cheng, “Characteristics and applications of spatiotemporally focused femtosecond laser pulses,” Appl. Sci. 6(12), 428 (2016).
[Crossref]

2014 (1)

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

2012 (1)

2011 (3)

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Y. Li and S. Qu, “Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array,” Opt. Lett. 36(21), 4236–4238 (2011).
[Crossref]

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

2010 (1)

2009 (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

2006 (2)

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[Crossref]

2005 (1)

2004 (3)

R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
[Crossref]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref]

2001 (2)

1999 (1)

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in biology and medicine,” Annu. Rev. Biomed. Eng. 1(1), 401–425 (1999).
[Crossref]

Adams, D. E.

Aközbek, N.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[Crossref]

An, R.

R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855–1859 (2005).
[Crossref]

R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
[Crossref]

Backus, S.

Bado, P.

Becker, A.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[Crossref]

Becker, H.

A. Manz and H. Becker, “Microsystem technology in chemistry and life sciences,” Springer Science & Business Media (2003).

Bellouard, Y.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

Block, E.

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Cheng, Y.

Y. Cheng, “Internal laser writing of high-aspect-ratio microfluidic structures in silicate glasses for Lab-on-a-Chip applications,” Micromachines 8(2), 59 (2017).
[Crossref]

C. Jing, Z. Wang, and Y. Cheng, “Characteristics and applications of spatiotemporally focused femtosecond laser pulses,” Appl. Sci. 6(12), 428 (2016).
[Crossref]

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Chin, S. L.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[Crossref]

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

Chu, W.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

Corrielli, G.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Dou, Y.

R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855–1859 (2005).
[Crossref]

R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
[Crossref]

Dugan, M.

Durfee, C. G.

Fang, Y.

R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
[Crossref]

Gao, H.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Gong, Q.

R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855–1859 (2005).
[Crossref]

R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
[Crossref]

Gray, M. L.

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in biology and medicine,” Annu. Rev. Biomed. Eng. 1(1), 401–425 (1999).
[Crossref]

Greco, M.

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

Gu, M.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

Itoh, K.

Jiang, Y.

Jing, C.

C. Jing, Z. Wang, and Y. Cheng, “Characteristics and applications of spatiotemporally focused femtosecond laser pulses,” Appl. Sci. 6(12), 428 (2016).
[Crossref]

John, S.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Johnson, A.

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref]

Kar, A. K.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Kleinfeld, D.

Kuroda, D.

Li, G.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Li, Y.

Liu, W.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Manz, A.

A. Manz and H. Becker, “Microsystem technology in chemistry and life sciences,” Springer Science & Business Media (2003).

Marcinkevicius, A.

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref]

Misawa, H.

Miwa, M.

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Ni, J.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Nishii, J.

Osellame, R.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Paiè, P.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Qu, S.

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

Ródenas, A.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Said, A.

Schmidt, M. A.

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in biology and medicine,” Annu. Rev. Biomed. Eng. 1(1), 401–425 (1999).
[Crossref]

Shin, Y. C.

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

Squier, J. A.

Sugioka, K.

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

Théberge, F.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[Crossref]

Tsai, P. S.

Vitek, D.

Vitek, D. N.

Voldman, J.

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in biology and medicine,” Annu. Rev. Biomed. Eng. 1(1), 401–425 (1999).
[Crossref]

Wang, Z.

C. Jing, Z. Wang, and Y. Cheng, “Characteristics and applications of spatiotemporally focused femtosecond laser pulses,” Appl. Sci. 6(12), 428 (2016).
[Crossref]

Watanabe, M.

Watanable, W.

Xu, Z.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Yamada, K.

Yang, H.

R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855–1859 (2005).
[Crossref]

R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
[Crossref]

Yao, J.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Zeng, B.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Zhang, H.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Zhao, X.

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in biology and medicine,” Annu. Rev. Biomed. Eng. 1(1), 401–425 (1999).
[Crossref]

Appl. Phys. A (3)

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84(1-2), 47–61 (2006).
[Crossref]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

Appl. Phys. Rev. (1)

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

Appl. Sci. (1)

C. Jing, Z. Wang, and Y. Cheng, “Characteristics and applications of spatiotemporally focused femtosecond laser pulses,” Appl. Sci. 6(12), 428 (2016).
[Crossref]

Chin. Phys. Lett. (1)

R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, and Q. Gong, “Laser micro-hole drilling of soda-lime glass with femtosecond pulses,” Chin. Phys. Lett. 21(12), 2465–2468 (2004).
[Crossref]

J. Phys. Chem. C (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Light: Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Micromachines (1)

Y. Cheng, “Internal laser writing of high-aspect-ratio microfluidic structures in silicate glasses for Lab-on-a-Chip applications,” Micromachines 8(2), 59 (2017).
[Crossref]

Nat. Photonics (1)

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (1)

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, and Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[Crossref]

Phys. Rev. Lett. (1)

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[Crossref]

Other (1)

A. Manz and H. Becker, “Microsystem technology in chemistry and life sciences,” Springer Science & Business Media (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of the experimental setup. VF: variable neutral density filter. G1-2: gratings. L1, L2, L3: lenses. DM: dichroic mirror. OL: objective lens. GC: glass cuvette. SA: sample. LA: lamp.
Fig. 2.
Fig. 2. Images and schematic illustrations (Inserts) of the optical breakdown with (a) CF scheme and (b) SSTF scheme when femtosecond laser pulses are focused on the rear surface of a 10 mm thick silica glass at 0.02 NA. Pulse energy: 100 µJ.
Fig. 3.
Fig. 3. Optical micrographs of microchannels drilled from the rear surface of a 10 mm thick silica glass with CF scheme (a-f) and SSTF scheme (g-l) at different laser powers using a 0.06 NA lens. Writing speed: 5 µm/s; laser pulse energy: 6 µJ in (a, g), 10 µJ in (b, h), 20 µJ in (c, i), 40 µJ in (d, j), 60 µJ in (e, k) and 80 µJ in (f, l). Scale bar: 200 µm.
Fig. 4.
Fig. 4. Optical micrographs of microchannels drilled from the rear surface of a 10 mm thick silica glass with CF scheme (a-f) and SSTF scheme (g-l) at different laser powers at 0.02 NA. Writing speed: 5 µm/s, laser pulse energy: 80 µJ in (a, e), 100 µJ in (b, f), 120 µJ in (c, g) and 150 µJ in (d, h). Scale bar: 200 µm.
Fig. 5.
Fig. 5. Optical micrographs of microchannels drilled from the rear surface of a 10 mm thick silica glass with CF scheme (a-f) and SSTF scheme (g-l) at different laser powers at 0.02 NA. Writing speed: 10 µm/s, laser pulse energy: 80 µJ in (a, e), 100 µJ in (b, f), 120 µJ in (c, g) and 150 µJ in (d, h). Scale bar: 200 µm.
Fig. 6.
Fig. 6. Micrographs and schematic drawing (Inserts) of curved microchannels (a, b) and a helical microchannel (c) fabricated with the SSTF scheme. (d-f) show zoom-in views of the microchannels. Writing speed: 10 µm/s, laser pulse energy: 100 µJ. Scale bar: 50 µm.

Metrics