Abstract

Modification in the optical and thermochromic properties of VO2 films induced by argon ion irradiation were investigated. VO2 films prepared by direct-current reactive magnetron sputtering on fused silica were irradiated with 500 eV argon ions. Compared with the pristine VO2 film (ΔH = 16 °C and Tc = 62 °C), the film irradiated by argon ions had a narrower ΔH (∼11 °C) and lower Tc (∼53.5 °C). Furthermore, the irradiated film showed higher visible transmittance than the pristine film. The significant reduction in phase transition temperature and thermal hysteresis width can provide an available solution to regulate the thermochromism of VO2 films by low-energy argon ion irradiation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of VO2 thin films deposited on different glass substrates

Kai Dai, Jie Lian, Mark J. Miller, JunLan Wang, YuJun Shi, YuXiang Liu, HaoNan Song, and Xiao Wang
Opt. Mater. Express 9(2) 663-672 (2019)

Metal-insulator phase transition in Hf-doped VO2(M) thin films: a study on the structural, electrical, optical and infrared radiation properties

Taixing Huang, Tongtong Kang, Yue Li, Jitao Li, Longjiang Deng, and Lei Bi
Opt. Mater. Express 8(8) 2300-2311 (2018)

Selective IR response of highly textured phase change VO2 nanostructures obtained via oxidation of electron beam deposited metallic V films

Merve Ertas Uslu, I. Burc Misirlioglu, and Kursat Sendur
Opt. Mater. Express 8(8) 2035-2049 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
    [Crossref]
  2. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO2 electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
    [Crossref]
  3. S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
    [Crossref]
  4. M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
    [Crossref]
  5. J. Houska, D. Kolenaty, J. Rezek, and J. Vlcek, “Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 529–534 (2017).
    [Crossref]
  6. J. Houska, D. Kolenaty, J. Vlcek, and R. Cerstvy, “Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at 300 °C,” Thin Solid Films 660, 463–470 (2018).
    [Crossref]
  7. M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
    [Crossref]
  8. E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal−Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
    [Crossref]
  9. S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
    [Crossref]
  10. R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
    [Crossref]
  11. Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
    [Crossref]
  12. Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
    [Crossref]
  13. S. Y. Li, G. A. Niklasson, and C. G. Granqvist, “Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met,” Thin Solid Films 520(10), 3823–3828 (2012).
    [Crossref]
  14. G. R. Khan, K. Asokan, and B. Ahmad, “Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition,” Thin Solid Films 625, 155–162 (2017).
    [Crossref]
  15. K. Shibuya, M. Kawasaki, and Y. Tokura, “Metal-insulator transition in epitaxial V1-xWxO2 (0 < = x < = 0.33) thin films,” Appl. Phys. Lett. 96(2), 022102 (2010).
    [Crossref]
  16. S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
    [Crossref]
  17. S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
    [Crossref]
  18. X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
    [Crossref]
  19. L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
    [Crossref]
  20. J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
    [Crossref]
  21. M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
    [Crossref]
  22. X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
    [Crossref]
  23. S. P. Shi, D. Q. Gao, B. R. Xia, and D. S. Xue, “Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film,” J. Phys. D: Appl. Phys. 49(5), 055003 (2016).
    [Crossref]
  24. S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
    [Crossref]
  25. G. R. Khan, A. Kandasami, and B. A. Bhat, “Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions,” Radiat. Phys. Chem. 123, 55–62 (2016).
    [Crossref]
  26. Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
    [Crossref]
  27. J. C. Parker, “Raman scattering from VO2 single crystals: A study of the effects of surface oxidation,” Phys. Rev. B 42(5), 3164–3166 (1990).
    [Crossref]
  28. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).
    [Crossref]
  29. N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
    [Crossref]
  30. J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
    [Crossref]
  31. K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
    [Crossref]
  32. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
    [Crossref]
  33. H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
    [Crossref]
  34. L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
    [Crossref]

2018 (9)

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

J. Houska, D. Kolenaty, J. Vlcek, and R. Cerstvy, “Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at 300 °C,” Thin Solid Films 660, 463–470 (2018).
[Crossref]

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

2017 (6)

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

G. R. Khan, K. Asokan, and B. Ahmad, “Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition,” Thin Solid Films 625, 155–162 (2017).
[Crossref]

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

J. Houska, D. Kolenaty, J. Rezek, and J. Vlcek, “Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 529–534 (2017).
[Crossref]

2016 (3)

G. R. Khan, A. Kandasami, and B. A. Bhat, “Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions,” Radiat. Phys. Chem. 123, 55–62 (2016).
[Crossref]

S. P. Shi, D. Q. Gao, B. R. Xia, and D. S. Xue, “Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film,” J. Phys. D: Appl. Phys. 49(5), 055003 (2016).
[Crossref]

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

2015 (1)

2014 (2)

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

2013 (2)

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

2012 (3)

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

S. Y. Li, G. A. Niklasson, and C. G. Granqvist, “Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met,” Thin Solid Films 520(10), 3823–3828 (2012).
[Crossref]

2011 (2)

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
[Crossref]

2010 (3)

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

K. Shibuya, M. Kawasaki, and Y. Tokura, “Metal-insulator transition in epitaxial V1-xWxO2 (0 < = x < = 0.33) thin films,” Appl. Phys. Lett. 96(2), 022102 (2010).
[Crossref]

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).
[Crossref]

2009 (1)

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal−Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref]

2002 (1)

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

1990 (1)

J. C. Parker, “Raman scattering from VO2 single crystals: A study of the effects of surface oxidation,” Phys. Rev. B 42(5), 3164–3166 (1990).
[Crossref]

Aetukuri, N.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Ahmad, B.

G. R. Khan, K. Asokan, and B. Ahmad, “Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition,” Thin Solid Films 625, 155–162 (2017).
[Crossref]

Aitchison, J. S.

Alain, D.

Anwand, W.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Appavoo, K.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Asokan, K.

G. R. Khan, K. Asokan, and B. Ahmad, “Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition,” Thin Solid Films 625, 155–162 (2017).
[Crossref]

Azhan, N. H.

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

Bhat, B. A.

G. R. Khan, A. Kandasami, and B. A. Bhat, “Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions,” Radiat. Phys. Chem. 123, 55–62 (2016).
[Crossref]

Biersack, J. P.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).
[Crossref]

Boatner, L. A.

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Cai, X. B.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Cao, C. X.

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

Cao, X.

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

Cao, Z. Y.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Cerstvy, R.

J. Houska, D. Kolenaty, J. Vlcek, and R. Cerstvy, “Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at 300 °C,” Thin Solid Films 660, 463–470 (2018).
[Crossref]

Chang, T. C.

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

Charipar, N.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Che, R. C.

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

Chen, F. H.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Chen, J. Q.

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

Chen, L.

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

Chen, P. C.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Chen, S.

S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Chen, X.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Chen, X. S.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Chen, Z.

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

Cheng, C.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Cheng, H. L.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Ching, W. Y.

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

Chu, J. H.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Chu, W. S.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Du, J.

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

Dzunda, R.

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Facsko, S.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Fan, L. L.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Feldman, L. C.

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Gao, D. Q.

S. P. Shi, D. Q. Gao, B. R. Xia, and D. S. Xue, “Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film,” J. Phys. D: Appl. Phys. 49(5), 055003 (2016).
[Crossref]

Gao, P.

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Gao, Y.

S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Gao, Y. F.

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

Graf, T.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Granqvist, C. G.

S. Y. Li, G. A. Niklasson, and C. G. Granqvist, “Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met,” Thin Solid Films 520(10), 3823–3828 (2012).
[Crossref]

Grenzer, J.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Gu, Q. J.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Guo, Y. H.

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Haglund Jr, R. F.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Haynes, T. E.

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

He, H.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

He, X. F.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Houska, J.

J. Houska, D. Kolenaty, J. Vlcek, and R. Cerstvy, “Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at 300 °C,” Thin Solid Films 660, 463–470 (2018).
[Crossref]

J. Houska, D. Kolenaty, J. Rezek, and J. Vlcek, “Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 529–534 (2017).
[Crossref]

Huan, C. M.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Huang, C.

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

Huang, K.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Jeong, J.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO2 electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref]

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Ji, Y.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Jia, Q.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Jin, P.

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

Joushaghani, A.

Kandasami, A.

G. R. Khan, A. Kandasami, and B. A. Bhat, “Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions,” Radiat. Phys. Chem. 123, 55–62 (2016).
[Crossref]

Kang, L. T.

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

Kasik, I.

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Kawasaki, M.

K. Shibuya, M. Kawasaki, and Y. Tokura, “Metal-insulator transition in epitaxial V1-xWxO2 (0 < = x < = 0.33) thin films,” Appl. Phys. Lett. 96(2), 022102 (2010).
[Crossref]

Ke, Y. J.

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

Khan, G. R.

G. R. Khan, K. Asokan, and B. Ahmad, “Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition,” Thin Solid Films 625, 155–162 (2017).
[Crossref]

G. R. Khan, A. Kandasami, and B. A. Bhat, “Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions,” Radiat. Phys. Chem. 123, 55–62 (2016).
[Crossref]

Kim, H.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Kimura, S. I.

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

Kolenaty, D.

J. Houska, D. Kolenaty, J. Vlcek, and R. Cerstvy, “Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at 300 °C,” Thin Solid Films 660, 463–470 (2018).
[Crossref]

J. Houska, D. Kolenaty, J. Rezek, and J. Vlcek, “Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 529–534 (2017).
[Crossref]

Kolmakov, A.

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal−Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref]

Kumagai, T.

M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
[Crossref]

Lei, D. Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Li, C.

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Li, N.

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

Li, S. Y.

S. Y. Li, G. A. Niklasson, and C. G. Granqvist, “Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met,” Thin Solid Films 520(10), 3823–3828 (2012).
[Crossref]

Li, X.

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Li, X. F.

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

Li, X. J.

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

Lilach, Y.

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal−Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref]

Liu, B.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

Liu, J.

S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Liu, M.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Liu, S. Y.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Liu, Y. M.

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

Long, S. W.

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

Long, Y.

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

Lopez, R.

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Lu, Y.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Luo, H.

S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Luo, H. J.

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

Luo, X. G.

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Lv, W. Z.

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Ma, R.

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

Ma, X. L.

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Maier, S. A.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Mrazek, J.

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Nakajima, T.

M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
[Crossref]

Niklasson, G. A.

S. Y. Li, G. A. Niklasson, and C. G. Granqvist, “Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met,” Thin Solid Films 520(10), 3823–3828 (2012).
[Crossref]

Nishikawa, M.

M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
[Crossref]

Ohtsubo, Y.

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

Okimura, K.

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

Okutani, T.

M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
[Crossref]

Osofsky, M.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Ou, X.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Ouyang, W. K.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Palgrave, R. G.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

Pantelides, S. T.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Paradis, S.

Parker, J. C.

J. C. Parker, “Raman scattering from VO2 single crystals: A study of the effects of surface oxidation,” Phys. Rev. B 42(5), 3164–3166 (1990).
[Crossref]

Parkin, I. P.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

Parkin, S. S.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Peterka, P.

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Piqu, A.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Poon, J. K. S.

Pu, M. B.

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Puchy, V.

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Qadri, S. B.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Qi, H. J.

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Qi, S.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Ren, W.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Rezek, J.

J. Houska, D. Kolenaty, J. Rezek, and J. Vlcek, “Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 529–534 (2017).
[Crossref]

Sakai, J.

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

Samant, M. G.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Sankar, G.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

Schladt, T. D.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Shan, C.

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Shao, Z. W.

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

Shi, J. F.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Shi, R.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Shi, S. P.

S. P. Shi, D. Q. Gao, B. R. Xia, and D. S. Xue, “Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film,” J. Phys. D: Appl. Phys. 49(5), 055003 (2016).
[Crossref]

Shi, S. X.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Shibuya, K.

K. Shibuya, M. Kawasaki, and Y. Tokura, “Metal-insulator transition in epitaxial V1-xWxO2 (0 < = x < = 0.33) thin films,” Appl. Phys. Lett. 96(2), 022102 (2010).
[Crossref]

Skala, R.

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Song, S. C.

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Sonnefraud, Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Strelcov, E.

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal−Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref]

Sun, G. Y.

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

Tao, H.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

Tian, S.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

Tokura, Y.

K. Shibuya, M. Kawasaki, and Y. Tokura, “Metal-insulator transition in epitaxial V1-xWxO2 (0 < = x < = 0.33) thin films,” Appl. Phys. Lett. 96(2), 022102 (2010).
[Crossref]

Tsuchiya, T.

M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
[Crossref]

Vlcek, J.

J. Houska, D. Kolenaty, J. Vlcek, and R. Cerstvy, “Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at 300 °C,” Thin Solid Films 660, 463–470 (2018).
[Crossref]

J. Houska, D. Kolenaty, J. Rezek, and J. Vlcek, “Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 529–534 (2017).
[Crossref]

Vytykacova, S.

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Wan, M.

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

Wang, B.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Wang, C. R.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Wang, H.

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Wang, H. Y.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Wang, J. W.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Wang, L.

S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Wang, N.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Wang, S.

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

Wang, X.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Wen, X. L.

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

Wu, D.

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

Wu, S.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

Wu, Y. F.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Wu, Z. Y.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Xia, B. R.

S. P. Shi, D. Q. Gao, B. R. Xia, and D. S. Xue, “Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film,” J. Phys. D: Appl. Phys. 49(5), 055003 (2016).
[Crossref]

Xiao, X. D.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Xing, H. Z.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Xiong, M.

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

Xiong, Q. H.

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

Xu, G.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Xu, X. F.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Xue, D. S.

S. P. Shi, D. Q. Gao, B. R. Xia, and D. S. Xue, “Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film,” J. Phys. D: Appl. Phys. 49(5), 055003 (2016).
[Crossref]

Yang, L. Q.

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

Ye, H.

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

You, T.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Yu, W.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Yu, Z. Y.

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

Yuan, Y.

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Zaghrioui, M.

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

Zhan, Y. J.

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

Zhang, D. P.

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Zhang, J.

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Zhang, L.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Zhang, L. F.

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

Zhang, S. W.

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

Zhang, Z. T.

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

Zhao, D. Y.

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

Zhao, X.

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

Zhu, M. D.

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Ziegler, J. F.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).
[Crossref]

Ziegler, M. D.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).
[Crossref]

Zou, C. W.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

ACS Nano (1)

Y. J. Ke, X. L. Wen, D. Y. Zhao, R. C. Che, Q. H. Xiong, and Y. Long, “Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance,” ACS Nano 11(7), 7542–7551 (2017).
[Crossref]

Adv. Mater. Interfaces (1)

Q. Jia, J. Grenzer, H. He, W. Anwand, Y. Ji, Y. Yuan, K. Huang, T. You, W. Yu, W. Ren, X. Chen, M. Liu, S. Facsko, X. Wang, and X. Ou, “3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering,” Adv. Mater. Interfaces 5(8), 1701268 (2018).
[Crossref]

Appl. Phys. Lett. (3)

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqu, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

K. Shibuya, M. Kawasaki, and Y. Tokura, “Metal-insulator transition in epitaxial V1-xWxO2 (0 < = x < = 0.33) thin films,” Appl. Phys. Lett. 96(2), 022102 (2010).
[Crossref]

Appl. Surf. Sci. (4)

S. W. Long, X. Cao, G. Y. Sun, N. Li, T. C. Chang, Z. W. Shao, and P. Jin, “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci. 441, 764–772 (2018).
[Crossref]

M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao, “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci. 410, 363–372 (2017).
[Crossref]

J. Houska, D. Kolenaty, J. Rezek, and J. Vlcek, “Characterization of thermochromic VO2 (prepared at 250 °C) in a wide temperature range by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 529–534 (2017).
[Crossref]

X. F. Xu, X. F. He, H. Y. Wang, Q. J. Gu, S. X. Shi, H. Z. Xing, C. R. Wang, J. Zhang, X. S. Chen, and J. H. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

J. Appl. Phys. (1)

N. H. Azhan, K. Okimura, Y. Ohtsubo, S. I. Kimura, M. Zaghrioui, and J. Sakai, “Large modification in insulator-metal transition of VO2 films grown on Al2O3(001) by high energy ion irradiation in biased reactive sputtering,” J. Appl. Phys. 119(5), 055308 (2016).
[Crossref]

J. Phys. Chem. C (3)

R. Shi, J. W. Wang, X. B. Cai, L. F. Zhang, P. C. Chen, S. Y. Liu, L. Zhang, W. K. Ouyang, N. Wang, and C. Cheng, “Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers,” J. Phys. Chem. C 121(44), 24877–24885 (2017).
[Crossref]

S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, “Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, C. X. Cao, Z. Chen, and H. J. Luo, “Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution,” J. Phys. Chem. C 114(4), 1901–1911 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. P. Shi, D. Q. Gao, B. R. Xia, and D. S. Xue, “Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film,” J. Phys. D: Appl. Phys. 49(5), 055003 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, “Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process,” Jpn. J. Appl. Phys. 50, 01BE04 (2011).
[Crossref]

Mater. Lett. (1)

X. F. Li, L. Q. Yang, S. W. Zhang, X. J. Li, J. Q. Chen, and C. Huang, “VO2(M) with narrow hysteresis width from a new metastable phase of crystallized VO2(M) 0.25H2O,” Mater. Lett. 211, 308–311 (2018).
[Crossref]

Materials (1)

M. D. Zhu, C. Shan, C. Li, H. Wang, H. J. Qi, D. P. Zhang, and W. Z. Lv, “Thermochromic and femtosecond-laser-induced damage performance of tungsten-doped vanadium dioxide films prepared using an alloy target,” Materials 11(9), 1724 (2018).
[Crossref]

Nano Lett. (2)

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal−Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref]

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund Jr, “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett. 12(2), 780–786 (2012).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, and I. Kasik, “Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2µm,” Opt. Mater. 78, 415–420 (2018).
[Crossref]

Photonics Res. (2)

L. Chen, H. Ye, Y. M. Liu, D. Wu, R. Ma, and Z. Y. Yu, “Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers,” Photonics Res. 5(4), 335–339 (2017).
[Crossref]

S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, and X. G. Luo, “Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber,” Photonics Res. 6(6), 492–497 (2018).
[Crossref]

Phys. Rev. B (2)

J. C. Parker, “Raman scattering from VO2 single crystals: A study of the effects of surface oxidation,” Phys. Rev. B 42(5), 3164–3166 (1990).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund Jr, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Radiat. Phys. Chem. (1)

G. R. Khan, A. Kandasami, and B. A. Bhat, “Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions,” Radiat. Phys. Chem. 123, 55–62 (2016).
[Crossref]

Science (1)

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

Y. J. Zhan, X. D. Xiao, Y. Lu, Z. Y. Cao, S. Qi, C. M. Huan, H. L. Cheng, J. F. Shi, and G. Xu, “Enhanced thermal stability and thermochromic properties of VOx-based thin films by room temperature magnetron sputtering,” Sol. Energy Mater. Sol. Cells 174, 102–111 (2018).
[Crossref]

S. Wu, S. Tian, B. Liu, H. Tao, X. Zhao, R. G. Palgrave, G. Sankar, and I. P. Parkin, “Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties,” Sol. Energy Mater. Sol. Cells 176, 427–434 (2018).
[Crossref]

J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, and C. X. Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Thin Solid Films (3)

S. Y. Li, G. A. Niklasson, and C. G. Granqvist, “Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met,” Thin Solid Films 520(10), 3823–3828 (2012).
[Crossref]

G. R. Khan, K. Asokan, and B. Ahmad, “Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition,” Thin Solid Films 625, 155–162 (2017).
[Crossref]

J. Houska, D. Kolenaty, J. Vlcek, and R. Cerstvy, “Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at 300 °C,” Thin Solid Films 660, 463–470 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of the VO2 films irradiated by low-energy argon ions in the ion-beam sputtering system.
Fig. 2.
Fig. 2. (a) XRD pattern and (b) Raman spectra of the untreated and Ar ion-treated vanadium dioxide films.
Fig. 3.
Fig. 3. SEM images of the untreated (a) and argon ions treated (b) VO2 films.
Fig. 4.
Fig. 4. 3D and 2D representations of the AFM topographies of untreated and ion-irradiated VO2 films.
Fig. 5.
Fig. 5. SRIM simulates of argon ion penetration events in our experimental conditions: 100 nm-thick VO2 film is irradiated by an argon ion beam with 500 eV. (a) distribution of the argon ion penetration in the film sample. (b) the range of incident argon ions in the VO2 film sample.
Fig. 6.
Fig. 6. (a) XPS results for the VO2 films. (b) XPS spectra of V2p peak for the untreated and Ar ion-treated vanadium dioxide films.
Fig. 7.
Fig. 7. (a) The phase transition behavior of the optical transmittance of the untreated and Ar ion-treated vanadium dioxide films at λ = 1550 nm and (b) transition temperature for the two film samples.
Fig. 8.
Fig. 8. The response time of phase transition of the untreated and ion-treated VO2 films during the heating process.
Fig. 9.
Fig. 9. Temperature-dependent sheet resistance of the as-deposited and argon ion treated VO2 films.
Fig. 10.
Fig. 10. Transmittance spectra of the untreated and ion-treated vanadium dioxide films.

Tables (1)

Tables Icon

Table 1. The detailed parameters of ion source.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = k . λ β c o s θ

Metrics