Abstract

We report on a strategy to realize simultaneous and efficient multi-band near-infrared (NIR) emission from Pr3+, Tm3+ and Er3+ that covers almost the entire optical communication wavelength region (from O to U band) by employing a nanocrystal-solvent colloidal system. The NIR emission spectra and fluorescent decay curves of different colloidal systems are investigated and compared. The results indicated that interaction among different RE ions that lead to quenching of the NIR emission could be effectively inhibited by solutions containing NCs doped with three different ion pairs (Yb3+-Pr3+, Yb3+-Tm3+ and Yb3+-Er3+) separately. The mechanism of this phenomenon is also discussed. This strategy may have potential applications in multi-band optical amplifiers for the optical communication window.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes

Xiaofeng Liu, Yingzhi Chi, Guoping Dong, E Wu, Yanbo Qiao, Heping Zeng, and Jianrong Qiu
Opt. Express 17(7) 5885-5890 (2009)

Improved 800 nm emission of Tm3+ sensitized by Yb3+ and Ho3+ in β-NaYF4 nanocrystals under 980 nm excitation

Lili Wang, Weiping Qin, Zhenyu Liu, Dan Zhao, Guanshi Qin, Weihua Di, and Chunfeng He
Opt. Express 20(7) 7602-7607 (2012)

Tri-color upconversion luminescence of Rare earth doped BaTiO3 nanocrystals and lowered color separation

Yunxin Liu, Wojciech A. Pisarski, Songjun Zeng, Changfu Xu, and Qibin Yang
Opt. Express 17(11) 9089-9098 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
    [Crossref]
  2. Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
    [Crossref]
  3. B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
    [Crossref]
  4. S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
    [Crossref]
  5. J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
    [Crossref]
  6. W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
    [Crossref]
  7. X. F. Liu and J. R. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
    [Crossref]
  8. P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
    [Crossref]
  9. Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
    [Crossref]
  10. S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
    [Crossref]
  11. D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
    [Crossref]
  12. R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
    [Crossref]
  13. M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
    [Crossref]
  14. D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
    [Crossref]
  15. P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
    [Crossref]
  16. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  17. H. Ogoshi, S. Ichino, and K. Kurotori, “Broadband optical amplifiers for DWDM systems,” Furukawa Electr. Rev. 20, 17–21 (2000).
  18. B. Zhu, M. Law, J. Rooney, S. Shenk, M. F. Yan, and D. J. DiGiovanni, “High-power broadband Yb-free clad-pumped EDFA for L-band DWDM applications,” Opt. Lett. 39(1), 72–75 (2014).
    [Crossref]
  19. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
    [Crossref]
  20. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
    [Crossref]
  21. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
    [Crossref]
  22. S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
    [Crossref]
  23. B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
    [Crossref]
  24. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
    [Crossref]
  25. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [Crossref]
  26. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
    [Crossref]
  27. B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
    [Crossref]
  28. Q. Zhao, J. Zhang, Y. Luo, J. Wen, and G. D. Peng, “Energy transfer enhanced near-infrared spectral performance in bismuth/erbium codoped aluminosilicate fibers for broadband application,” Opt. Express 26(14), 17889 (2018).
    [Crossref]
  29. Q. Zhao, Y. Luo, W. Wang, J. Canning, and G. D. Peng, “Enhanced broadband near-IR emission and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping,” AIP Adv. 7(4), 045012 (2017).
    [Crossref]
  30. Y. Luo, J. Wen, J. Zhang, J. Canning, and G. D. Peng, “Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands,” Opt. Lett. 37(16), 3447 (2012).
    [Crossref]
  31. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
    [Crossref]
  32. L. Wang, P. Li, and Y. Li, “Down- and Up- Conversion Luminescent Nanorods,” Adv. Mater. 19(20), 3304–3307 (2007).
    [Crossref]
  33. X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
    [Crossref]
  34. Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+-Tm3+ energy transfer evidenced in nanostructured Tm3+: Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008).
    [Crossref]
  35. Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
    [Crossref]
  36. T. Föster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
    [Crossref]
  37. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  38. S. Heer, K. Kömpe, H. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23-24), 2102–2105 (2004).
    [Crossref]
  39. H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
    [Crossref]
  40. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, 2006), Chap. 4.
  41. M. Kerle, The scattering of light (Academic, 1969).
  42. M. J. F. Digonnet, “Closed-form expressions for the gain in three-and four-level laser fibers,” IEEE J. Quantum Electron. 26(10), 1788–1796 (1990).
    [Crossref]
  43. M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
    [Crossref]

2018 (2)

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Q. Zhao, J. Zhang, Y. Luo, J. Wen, and G. D. Peng, “Energy transfer enhanced near-infrared spectral performance in bismuth/erbium codoped aluminosilicate fibers for broadband application,” Opt. Express 26(14), 17889 (2018).
[Crossref]

2017 (2)

Q. Zhao, Y. Luo, W. Wang, J. Canning, and G. D. Peng, “Enhanced broadband near-IR emission and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping,” AIP Adv. 7(4), 045012 (2017).
[Crossref]

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

2016 (1)

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

2015 (5)

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

X. F. Liu and J. R. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

2014 (5)

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

B. Zhu, M. Law, J. Rooney, S. Shenk, M. F. Yan, and D. J. DiGiovanni, “High-power broadband Yb-free clad-pumped EDFA for L-band DWDM applications,” Opt. Lett. 39(1), 72–75 (2014).
[Crossref]

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

2013 (1)

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

2012 (1)

2011 (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

2009 (2)

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

2008 (6)

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+-Tm3+ energy transfer evidenced in nanostructured Tm3+: Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008).
[Crossref]

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

2007 (3)

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

L. Wang, P. Li, and Y. Li, “Down- and Up- Conversion Luminescent Nanorods,” Adv. Mater. 19(20), 3304–3307 (2007).
[Crossref]

2006 (1)

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

2005 (3)

2004 (2)

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

S. Heer, K. Kömpe, H. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23-24), 2102–2105 (2004).
[Crossref]

2002 (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

2000 (1)

H. Ogoshi, S. Ichino, and K. Kurotori, “Broadband optical amplifiers for DWDM systems,” Furukawa Electr. Rev. 20, 17–21 (2000).

1996 (1)

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

1990 (1)

M. J. F. Digonnet, “Closed-form expressions for the gain in three-and four-level laser fibers,” IEEE J. Quantum Electron. 26(10), 1788–1796 (1990).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1948 (1)

T. Föster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[Crossref]

Afonso, C. N.

Bai, G.

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Bi, G.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

Bo, S.

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

Borreman, A.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Buchinskaya, I. I.

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

Bystrova, A. A.

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

Canning, J.

Q. Zhao, Y. Luo, W. Wang, J. Canning, and G. D. Peng, “Enhanced broadband near-IR emission and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping,” AIP Adv. 7(4), 045012 (2017).
[Crossref]

Y. Luo, J. Wen, J. Zhang, J. Canning, and G. D. Peng, “Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands,” Opt. Lett. 37(16), 3447 (2012).
[Crossref]

Che, K.

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Chen, C.

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

Chen, D.

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref]

Chen, G.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
[Crossref]

Chen, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Chen, P.

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

Chen, W.

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

Chen, X.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

Chen, Z.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Chi, Y.

Cui, W.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Dekker, R.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Diemeer, M. B. J.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

DiGiovanni, D. J.

Digonnet, M. J. F.

M. J. F. Digonnet, “Closed-form expressions for the gain in three-and four-level laser fibers,” IEEE J. Quantum Electron. 26(10), 1788–1796 (1990).
[Crossref]

Dong, G.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref]

Dong, H.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

Driessen, A.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

Du, S. R.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Fei, B.

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Feng, G.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

Föster, T.

T. Föster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[Crossref]

Fu, H.

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Güdel, H.

S. Heer, K. Kömpe, H. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23-24), 2102–2105 (2004).
[Crossref]

Guo, Q.

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

Haase, M.

S. Heer, K. Kömpe, H. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23-24), 2102–2105 (2004).
[Crossref]

Han, J.

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

Hao, J.

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Heer, S.

S. Heer, K. Kömpe, H. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23-24), 2102–2105 (2004).
[Crossref]

Huang, P.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

Huang, X.

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Ichino, S.

H. Ogoshi, S. Ichino, and K. Kurotori, “Broadband optical amplifiers for DWDM systems,” Furukawa Electr. Rev. 20, 17–21 (2000).

Jia, Z.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

Jiang, C.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Jiang, N.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Jiang, W.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

Jiang, X.

Jin, D. Y.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Kang, S.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Kerle, M.

M. Kerle, The scattering of light (Academic, 1969).

Klunder, D. J. W.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

Kömpe, K.

S. Heer, K. Kömpe, H. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23-24), 2102–2105 (2004).
[Crossref]

Krivandina, E. A.

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

Kurotori, K.

H. Ogoshi, S. Ichino, and K. Kurotori, “Broadband optical amplifiers for DWDM systems,” Furukawa Electr. Rev. 20, 17–21 (2000).

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, 2006), Chap. 4.

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Law, M.

Lei, W.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

Li, L. D.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Li, P.

L. Wang, P. Li, and Y. Li, “Down- and Up- Conversion Luminescent Nanorods,” Adv. Mater. 19(20), 3304–3307 (2007).
[Crossref]

Li, X.

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Li, Y.

L. Wang, P. Li, and Y. Li, “Down- and Up- Conversion Luminescent Nanorods,” Adv. Mater. 19(20), 3304–3307 (2007).
[Crossref]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref]

Liu, D. M.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Liu, S.

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Liu, X.

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref]

Liu, X. F.

X. F. Liu and J. R. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

Liu, X. G.

B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Liu, Y. J.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Lu, Y. Q.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Luo, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Luo, Y.

Lyu, G. M.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Ma, C.

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

Ma, C. S.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Ma, E.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

Ma, H.

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

Meng, X.

Ogoshi, H.

H. Ogoshi, S. Ichino, and K. Kurotori, “Broadband optical amplifiers for DWDM systems,” Furukawa Electr. Rev. 20, 17–21 (2000).

Peng, G. D.

Peng, M.

Peng, Q.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref]

Piper, J. A.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Qiao, Y.

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

Qin, G.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Qin, W.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Qiu, J.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[Crossref]

Qiu, J. R.

X. F. Liu and J. R. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

Ren, J.

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

Rooney, J.

Ruan, J.

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

Sang, X.

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

Serna, R.

Sharonov, M. Y.

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

Shen, C.

Shenk, S.

Shi, B. Y.

B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Si, R.

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

Sobolev, B. P.

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

Song, W.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

Stouwdam, J. W.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

Sun, L.

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

Sun, L. D.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Tan, D.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

Tanabe, S.

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

Teng, Y.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

Tu, D.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

van Veggel, F. C. J. M.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

Vidal, X.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Wang, F.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Wang, J.

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Wang, L.

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

L. Wang, P. Li, and Y. Li, “Down- and Up- Conversion Luminescent Nanorods,” Adv. Mater. 19(20), 3304–3307 (2007).
[Crossref]

Wang, T.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Wang, W.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Q. Zhao, Y. Luo, W. Wang, J. Canning, and G. D. Peng, “Enhanced broadband near-IR emission and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping,” AIP Adv. 7(4), 045012 (2017).
[Crossref]

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
[Crossref]

Wang, X.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref]

Wen, J.

Wen, S. H.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Wörhoff, K.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

Wu, B.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

Wu, E.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref]

Xi, P.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Xiao, Z.

Xu, B.

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

Xu, C.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

Xu, F.

Xu, Y.

Yan, C.

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

Yan, C. H.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Yan, M. F.

Yan, Z.

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

Yang, X. S.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Yin, J.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

You, L.

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

Yu, G.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Zeng, H.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref]

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2295 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

Zhai, X.

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Zhang, C.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Zhang, D.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

Zhang, H.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Zhang, J.

Zhang, M.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Zhang, P. Z.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Zhang, Q.

Zhang, Y.

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

Zhao, D.

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

Zhao, J. B.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zhao, P.

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Zhao, Q.

Zhen, Z.

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

Zheng, S.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

Zheng, W.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

Zheng, X. L.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zheng, X. Y.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Zhmurova, Z. I.

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

Zhou, B.

B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Zhou, J.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

Zhou, J. J.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zhou, S.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

Zhou, Z. G.

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zhu, B.

B. Zhu, M. Law, J. Rooney, S. Shenk, M. F. Yan, and D. J. DiGiovanni, “High-power broadband Yb-free clad-pumped EDFA for L-band DWDM applications,” Opt. Lett. 39(1), 72–75 (2014).
[Crossref]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

Zhu, C.

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref]

Zhu, H.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

Zhuang, J.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref]

Adv. Funct. Mater. (1)

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Adv. Mater. (2)

L. Wang, P. Li, and Y. Li, “Down- and Up- Conversion Luminescent Nanorods,” Adv. Mater. 19(20), 3304–3307 (2007).
[Crossref]

S. Heer, K. Kömpe, H. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23-24), 2102–2105 (2004).
[Crossref]

Adv. Opt. Mater. (1)

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

AIP Adv. (1)

Q. Zhao, Y. Luo, W. Wang, J. Canning, and G. D. Peng, “Enhanced broadband near-IR emission and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping,” AIP Adv. 7(4), 045012 (2017).
[Crossref]

Ann. Phys. (1)

T. Föster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[Crossref]

Appl. Phys. Lett. (6)

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped Li Ga5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, “Optical gain at 1535 nm in LaF3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguide,” Appl. Phys. Lett. 91(16), 161109 (2007).
[Crossref]

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides,” Appl. Phys. Lett. 85(25), 6104–6106 (2004).
[Crossref]

C. R. Chim. (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

Chem. Rev. (1)

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref]

Chem. Soc. Rev. (2)

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref]

X. F. Liu and J. R. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

Furukawa Electr. Rev. (1)

H. Ogoshi, S. Ichino, and K. Kurotori, “Broadband optical amplifiers for DWDM systems,” Furukawa Electr. Rev. 20, 17–21 (2000).

IEEE J. Quantum Electron. (1)

M. J. F. Digonnet, “Closed-form expressions for the gain in three-and four-level laser fibers,” IEEE J. Quantum Electron. 26(10), 1788–1796 (1990).
[Crossref]

IEEE Photonics J. (1)

D. Zhang, X. Li, X. Huang, S. Liu, H. Fu, K. Che, and L. Wang, “Optical Amplification at 1064 nm in Nd (TTA)3 (TPPO)2 Complex Doped SU-8 Polymer Waveguide,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

H. Ma, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, and C. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Mater. Chem. (1)

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[Crossref]

J. Mater. Chem. C (1)

B. Xu, J. Hao, Q. Guo, J. Wang, G. Bai, B. Fei, S. Zhou, and J. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

J. Nanomater. (1)

P. Zhao, M. Zhang, T. Wang, X. Liu, X. Zhai, G. Qin, W. Qin, F. Wang, and D. Zhang, “Optical amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

J. Nanosci. Nanotechnol. (1)

M. Zhang, J. Yin, Z. Jia, W. Song, X. Wang, G. Qin, D. Zhao, W. Qin, F. Wang, and D. Zhang, “Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4: Yb3+, Er3+ Nanocrystals at 0.54 μm Wavelength,” J. Nanosci. Nanotechnol. 16(4), 3564–3569 (2016).
[Crossref]

Laser Photonics Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Nano Lett. (1)

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref]

Nanoscale (2)

P. Chen, J. Zhang, B. Xu, X. Sang, W. Chen, X. Liu, J. Han, and J. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale 6(19), 11002–11006 (2014).
[Crossref]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref]

Nat. Nanotechnol. (1)

B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Nature (2)

Y. J. Liu, Y. Q. Lu, X. S. Yang, X. L. Zheng, S. H. Wen, F. Wang, X. Vidal, J. B. Zhao, D. M. Liu, Z. G. Zhou, C. S. Ma, J. J. Zhou, J. A. Piper, P. Xi, and D. Y. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref]

Opt. Commun. (1)

M. Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, and B. P. Sobolev, “Improved by Yb3+ sensitizer fluorite crystals, doped with Pr3+, for 1.3 μm optical amplifiers,” Opt. Commun. 124(5-6), 595–601 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Other (2)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, 2006), Chap. 4.

M. Kerle, The scattering of light (Academic, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Typical TEM image of NaYF4:RE NCs synthesized using the solvothermal route at 150°C for 4 h, and (b) size distribution of the NCs.
Fig. 2.
Fig. 2. Emission spectra of the colloidal solutions containing NCs of (a) NaY(99.5-x)%Ybx%Pr0.5%F4 (x = 1∼10), (b) NaY(99.5-x)%Ybx%Tm0.5%F4 (x = 5∼99), and (c) NaY(99-x)%Ybx%Er1%F4 (x = 2∼50) upon excitation with a 980 nm laser diode. The electronic transitions corresponding to each of the emission are indicated in each figure.
Fig. 3.
Fig. 3. Emission spectra of solutions containing the three types NCs with a weight fraction ratio of NC-YP/NCYT/NC-YE = 20/30/1 (blue curve), and solutions containing NCs with the atomic concentration of NaY0.88Yb0.2Pr0.005Tm0.005Er0.01F4 (red curve). The colored background of the figure illustrating the communication wavelength region from O band (left) to U band (right).
Fig. 4.
Fig. 4. Decay profiles recorded at (a) 1310 nm, (b)1470 nm and (c) 1550 nm, which belong to the emission of Pr3+, Tm3+ and Er3+, respectively. The black curves corresponds to the emission decays of colloidal solution containing a single type of NCs: (a) NC-YP, (b) NC-YT and (c) NC-YE; the red and the blue curves are the emission decays of colloidal solution containing mixture of three different types of NCs, and a single type of NC codoped with Yb3+-Pr3+-Tm3+-Er3+, respectively, corresponding to the emission spectrum in Fig. 3.
Fig. 5.
Fig. 5. Representative X-ray diffraction pattern of NaYF4 nanocrystals synthesised at solvothermal conditions of 150°C and 4 h. All the diffraction peaks can be well indexed with a cubic crystal structure corresponding to JCPDS No. 77-2042. The XRD patterns of different RE ions doped NaYF4 shows no observable change compared with the result obtained for non-doped NaYF4 NCs.
Fig. 6.
Fig. 6. Typical absorption spectrum of the nanocrystals-carbon tetrachloride colloid system with a concentration of 0.5 wt.% for a sample thickness of 1 mm. Before the measurement, we first recorded the baseline by using the same quartz cuvette filled with pure CCl4. Therefore, in the transmission spectrum shown below, the optical loss by reflection at the air/quartz and quartz/CCl4 interface is excluded and only scattering and absorption contribute to optical loss. The transitions of the RE ions are all invisible. The two absorption peaks located at approximately 1410 nm and 1700nm are caused by the surface capping agents (oleic acid) which used to stabilize the colloidal solution.
Fig. 7.
Fig. 7. Part of the energy level diagrams illustrating sensitization process by Yb3+ for ion pairs of Yb3+-Pr3+ (a), Yb3+-Tm3+ (b) and Yb3+-Er3+ (c). The solid curves stand for the excitation process for RE ions, the dashed curves stand for energy transfer for Yb3+ to RE ions (RE = Pr, Tm or Er), and the dotted curves denote the phonon-assisted nonradiative transition between nearby electronic levels.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P D A ( d d ) = 3 h 4 c 4 Q A 4 π R 6 n 4 τ D f D ( E ) F A ( E ) E 4 d E
τ = 0 t I ( t ) d t / 0 I ( t ) d t
I T = I 0 exp [ ( α + σ ) l ]
σ = ( 2 / 3 ) N V k 4 r 3 ( n Δ n ) 2
g ( l ) = σ e τ Y b h v p P a b s A
P a b s = P 0 [ 1 exp ( α l ) ]

Metrics