Abstract

In this paper, we prove that indium tin oxide (ITO) can be a material of choice for wavelength-selective thermal emitters that enable operation in ambient air. The wavelength-selective thermal emission is achieved by plasmonic ITO perfect absorbers (IPAs) composed of ITO – Al2O3 – ITO tri-layers where the top ITO layer is a hexagonal array of ITO disks. Simulated optical spectra of the IPAs reveal nearly perfect absorptivities (i.e. 0.99) at obvious resonances, which can be easily tuned just by changing the size of the ITO disks. The fabricated IPAs that followed the pre-designed simulation also exhibit excellented resonant absorptivities (i.e. 0.92), as well as good resonance tunability, which indicate the appreciable performance of IPAs. Furthermore, we show that IPAs are also feasible to serve as highly-efficient thermal emitters that can operate in ambient air without the need for strict vacuum or inert gas conditions, providing another platform for IR plasmonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunability of indium tin oxide materials for mid-infrared plasmonics applications

Yu Wang, Adam C. Overvig, Sajan Shrestha, Ran Zhang, Ren Wang, Nanfang Yu, and Luca Dal Negro
Opt. Mater. Express 7(8) 2727-2739 (2017)

Fluorine-doped tin oxides for mid-infrared plasmonics

Farnood Khalilzadeh-Rezaie, Isaiah O. Oladeji, Justin W. Cleary, Nima Nader, Janardan Nath, Imen Rezadad, and Robert E. Peale
Opt. Mater. Express 5(10) 2184-2192 (2015)

Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters

Enas Sakr and Peter Bermel
Opt. Express 25(20) A880-A895 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref]
  2. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref]
  3. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [Crossref]
  4. B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
    [Crossref]
  5. J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
    [Crossref]
  6. H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
    [Crossref]
  7. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
    [Crossref]
  8. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  9. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  10. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
    [Crossref]
  11. T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612 (2017).
    [Crossref]
  12. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
    [Crossref]
  13. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
    [Crossref]
  14. T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
    [Crossref]
  15. U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref]
  16. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref]
  17. J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
    [Crossref]
  18. M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
    [Crossref]
  19. R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
    [Crossref]
  20. P. F. Robusto and R. Braunstein, “Optical Measurements of the Surface Plasmon of Indium-Tin Oxide,” Phys. Status Solidi A 119(1), 155–168 (1990).
    [Crossref]
  21. S. H. Brewer and S. Franzen, “Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
    [Crossref]
  22. S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol., A 14(3), 757–761 (1996).
    [Crossref]
  23. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
    [Crossref]
  24. A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
    [Crossref]
  25. L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. D. Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express 17(12), 10155–10167 (2009).
    [Crossref]
  26. F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184 (2015).
    [Crossref]
  27. R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
    [Crossref]
  28. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
    [Crossref]
  29. J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
    [Crossref]
  30. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  31. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref]
  32. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
    [Crossref]
  33. T. Wang and P. V. Radovanovic, “Free Electron Concentration in Colloidal Indium Tin Oxide Nanocrystals Determined by Their Size and Structure,” J. Phys. Chem. C 115(2), 406–413 (2011).
    [Crossref]
  34. M. Xi and B. M. Reinhard, “Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals,” J. Phys. Chem. C 122(10), 5698–5704 (2018).
    [Crossref]
  35. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
    [Crossref]
  36. S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
    [Crossref]
  37. M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
    [Crossref]
  38. K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
    [Crossref]
  39. F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
    [Crossref]
  40. F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
    [Crossref]
  41. P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
    [Crossref]
  42. X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
    [Crossref]
  43. X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
    [Crossref]
  44. T. Minami, T. Miyata, and T. Yamamoto, “Stability of transparent conducting oxide films for use at high temperatures,” J. Vac. Sci. Technol., A 17(4), 1822–1826 (1999).
    [Crossref]
  45. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  46. E. D. Palik, Handbook of Optical Constants of Solids, 3rd ed. (Academic Press, 1998).
  47. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [Crossref]
  48. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  49. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
    [Crossref]
  50. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
    [Crossref]

2018 (5)

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

M. Xi and B. M. Reinhard, “Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals,” J. Phys. Chem. C 122(10), 5698–5704 (2018).
[Crossref]

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

2017 (5)

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
[Crossref]

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612 (2017).
[Crossref]

2016 (5)

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

2015 (4)

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184 (2015).
[Crossref]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

2014 (6)

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref]

2013 (6)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

2012 (2)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
[Crossref]

2011 (5)

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref]

T. Wang and P. V. Radovanovic, “Free Electron Concentration in Colloidal Indium Tin Oxide Nanocrystals Determined by Their Size and Structure,” J. Phys. Chem. C 115(2), 406–413 (2011).
[Crossref]

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref]

2010 (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (3)

2008 (1)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

2006 (1)

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

2002 (1)

S. H. Brewer and S. Franzen, “Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

1999 (1)

T. Minami, T. Miyata, and T. Yamamoto, “Stability of transparent conducting oxide films for use at high temperatures,” J. Vac. Sci. Technol., A 17(4), 1822–1826 (1999).
[Crossref]

1998 (1)

1996 (1)

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol., A 14(3), 757–761 (1996).
[Crossref]

1990 (1)

P. F. Robusto and R. Braunstein, “Optical Measurements of the Surface Plasmon of Indium-Tin Oxide,” Phys. Status Solidi A 119(1), 155–168 (1990).
[Crossref]

Abb, M.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Aloni, S.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Boltasseva, A.

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Braunstein, R.

P. F. Robusto and R. Braunstein, “Optical Measurements of the Surface Plasmon of Indium-Tin Oxide,” Phys. Status Solidi A 119(1), 155–168 (1990).
[Crossref]

Brewer, S. H.

S. H. Brewer and S. Franzen, “Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

Brongersma, M. L.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Brown, T. M.

Buonsanti, R.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref]

Cannavale, A.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Carlo, A. D.

Celanovic, I.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Chang, J.-Y.

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

Chang, R. P. H.

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Chen, K.

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Choi, B.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Cleary, J. W.

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Cubukcu, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Cui, Y.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Cuscunà, M.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

D’apuzzo, F.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Dao, T. D.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
[Crossref]

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

de Groot, C. H.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref]

De Luca, A.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Djurišic, A. B.

Dominici, L.

Dondapati, K.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Dorodnyy, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Duscher, G.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Elazar, J. M.

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Esposito, M.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref]

Fedoryshyn, Y.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Feng, Q.

Franzen, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

S. H. Brewer and S. Franzen, “Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

Gambino, S.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Gavrilenko, A. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Gavrilenko, V. I.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Gigli, G.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Glembocki, O. J.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Guler, U.

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Guo, P.

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Hafner, C.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Helms, B. A.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref]

Hu, C.

Huang, C.

Hwang, H. Y.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Ishii, S.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Kanehara, M.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref]

Kang, J.-H.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Kasaya, T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Ketterson, J. B.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Khalilzadeh-Rezaie, F.

Kildishev, A.

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
[Crossref]

Kim, J.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Kim, S. J.

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Kitajima, M.

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Knickerbocker, S. A.

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol., A 14(3), 757–761 (1996).
[Crossref]

Koch, U.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Koike, H.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref]

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Kulkarni, A. K.

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol., A 14(3), 757–761 (1996).
[Crossref]

Kumar, M.

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

Lagutchev, A.

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Laughlin, B.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Leonard, D. N.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Leuthold, J.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Li, S. Q.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Li, S.-Q.

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Lio, G. E.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Liu, J.

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
[Crossref]

Liu, T.

Liu, X.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Llordes, A.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref]

Lochbaum, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Losego, M.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Lu, M.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Luo, X.

Lupi, S.

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

Majewski, M. L.

Malis, O.

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Maria, J.-P.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Michelotti, F.

Milliron, D. J.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref]

Minami, T.

T. Minami, T. Miyata, and T. Yamamoto, “Stability of transparent conducting oxide films for use at high temperatures,” J. Vac. Sci. Technol., A 17(4), 1822–1826 (1999).
[Crossref]

Miyata, T.

T. Minami, T. Miyata, and T. Yamamoto, “Stability of transparent conducting oxide films for use at high temperatures,” J. Vac. Sci. Technol., A 17(4), 1822–1826 (1999).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Muskens, O. L.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref]

Nabatame, T.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nader, N.

Nagao, T.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
[Crossref]

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nath, J.

Negro, L. D.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Odom, T. W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Ohi, A.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Oladeji, I. O.

Overvig, A. C.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, 3rd ed. (Academic Press, 1998).

Papasimakis, N.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref]

Park, J.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Peale, R. E.

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Prokes, S. M.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Pu, M.

Pucci, A.

A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
[Crossref]

Radovanovic, P. V.

T. Wang and P. V. Radovanovic, “Free Electron Concentration in Colloidal Indium Tin Oxide Nanocrystals Determined by Their Size and Structure,” J. Phys. Chem. C 115(2), 406–413 (2011).
[Crossref]

Rakic, A. D.

Raman, A.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Reale, A.

Reed, J. C.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Reinhard, B. M.

M. Xi and B. M. Reinhard, “Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals,” J. Phys. Chem. C 122(10), 5698–5704 (2018).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref]

Rezadad, I.

Rhodes, C.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Robusto, P. F.

P. F. Robusto and R. Braunstein, “Optical Measurements of the Surface Plasmon of Indium-Tin Oxide,” Phys. Status Solidi A 119(1), 155–168 (1990).
[Crossref]

Sakoda, K.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Sawada, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Schaller, R. D.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Seideman, T.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Sendner, M.

A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Shalaev, V. M.

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shim, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Shrestha, S.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Shuai, Y.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Stein, A.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Sugavaneshwar, R. P.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Takahara, J.

Tamanai, A.

A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
[Crossref]

Teranishi, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Umezawa, N.

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

Wada, Y.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Wang, C.

Wang, K. X.

Wang, L.

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Wang, M.

Wang, T.

T. Wang and P. V. Radovanovic, “Free Electron Concentration in Colloidal Indium Tin Oxide Nanocrystals Determined by Their Size and Structure,” J. Phys. Chem. C 115(2), 406–413 (2011).
[Crossref]

Wang, Y.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref]

Weibel, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Xi, M.

M. Xi and B. M. Reinhard, “Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals,” J. Phys. Chem. C 122(10), 5698–5704 (2018).
[Crossref]

Yamamoto, T.

T. Minami, T. Miyata, and T. Yamamoto, “Stability of transparent conducting oxide films for use at high temperatures,” J. Vac. Sci. Technol., A 17(4), 1822–1826 (1999).
[Crossref]

Yang, Y.

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

Yi, F.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Yokoyama, T.

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Yoshinaga, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref]

Yu, N.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

Yuan, H.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Zhang, L.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Zhang, Z. M.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Zhao, B.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Zhao, Z.

Zhou, W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

Zhu, A. Y.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zhu, H.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

ACS Nano (1)

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref]

ACS Photonics (8)

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

F. D’apuzzo, M. Esposito, M. Cuscunà, A. Cannavale, S. Gambino, G. E. Lio, A. De Luca, G. Gigli, and S. Lupi, “Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays,” ACS Photonics 5(6), 2431–2436 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Adv. Mater. (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Adv. Opt. Mater. (2)

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

K. Chen, P. Guo, T. D. Dao, S.-Q. Li, S. Ishii, T. Nagao, and R. P. H. Chang, “Protein-Functionalized Indium-Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing,” Adv. Opt. Mater. 5(17), 1700091 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Int. J. Heat Mass Transfer (2)

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref]

J. Appl. Phys. (1)

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

J. Phys. Chem. B (1)

S. H. Brewer and S. Franzen, “Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

J. Phys. Chem. C (2)

T. Wang and P. V. Radovanovic, “Free Electron Concentration in Colloidal Indium Tin Oxide Nanocrystals Determined by Their Size and Structure,” J. Phys. Chem. C 115(2), 406–413 (2011).
[Crossref]

M. Xi and B. M. Reinhard, “Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals,” J. Phys. Chem. C 122(10), 5698–5704 (2018).
[Crossref]

J. Vac. Sci. Technol., A (2)

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol., A 14(3), 757–761 (1996).
[Crossref]

T. Minami, T. Miyata, and T. Yamamoto, “Stability of transparent conducting oxide films for use at high temperatures,” J. Vac. Sci. Technol., A 17(4), 1822–1826 (1999).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (3)

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref]

Nat. Commun. (2)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Nat. Nanotechnol. (1)

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12(9), 866–870 (2017).
[Crossref]

Nat. Photonics (1)

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Phys. Rev. X (1)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Phys. Status Solidi A (2)

P. F. Robusto and R. Braunstein, “Optical Measurements of the Surface Plasmon of Indium-Tin Oxide,” Phys. Status Solidi A 119(1), 155–168 (1990).
[Crossref]

A. Tamanai, T. D. Dao, M. Sendner, T. Nagao, and A. Pucci, “Mid-infrared optical and electrical properties of indium tin oxide films,” Phys. Status Solidi A 214(3), 1600467 (2017).
[Crossref]

Proc. Natl. Acad. Sci. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012).
[Crossref]

Science (1)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids, 3rd ed. (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) A comparison between measured permittivity of the sputtered ITO film (red curves) with permitivities of Au (orange curves) and W (blue curves). Negative real part of ITO’s permittivity clearly reveals plasmonic behavior of ITO in the IR region. The complex permitivities of Au and W taken from the literature [45] were divided by a factor of 10 for a better comparison. (b) Figure-of-merit ($- {{{\varepsilon _1}} \mathord{\left/ {\vphantom {{{\varepsilon_1}} {{\varepsilon_2}}}} \right.} {{\varepsilon _2}}}$, solid curves) and skin depths (dashed curves) of ITO (red), Au (orange) and W (blue).
Fig. 2.
Fig. 2. (a) Scheme of IPA configured by tri-layered ITO – Al2O3 – ITO with a hexagonal lattice ITO disk resonator array arranged on the top of Al2O3-ITO layered films. Dashed rectangle indicates the unit cell defined in the simulation. (b) Simulated optical spectra including absorptivity – A (red curve), transmittance – T (blue curve) and reflectance – R (black curve) of IPA with a periodicity – p of 3 μm, diameter – d of 2.01 μm and insulator thickness – t of 0.4 μm. (c) Resonance tunability of IPA by changing diameter – d of ITO disk resonator while keeping the other parameters unchanged (p = 3 μm, t = 0.4 μm). The thicknesses of ITO disk and ITO film are kept unchanged at 0.15 μm and 0.4 μm, respectively. In the simulation, the incident electromagnetic field propagated along the –z-axis, the electric field oscillated along the x-axis.
Fig. 3.
Fig. 3. Simulated electric fields (Ex and Ez) and magnetic field (Hy) distributions of the IPA (d = 2.01 μm, p = 3 μm, t = 0.4 μm) excited at two resonance modes: (a) at M1 (wavelength 4.0 μm) and (b) at M2 (8.4 μm). (c) Simulated angle-dependent absorptivity of the IPA with geometrical parameters of d = 2.01 μm, p = 3 μm, t = 0.4 μm. The dashed curves indicate SPPs at metal-dielectric interfaces of ITO disk hexagonal lattice (see Eq. (1)). (d) Simulated insulator thickness dependence of IPA’s absorptivity while keeping d and p unchanged at 2.01 μm and at 3 μm, respectively. In the simulation, the incident electromagnetic field propagated along the –z-axis, the electric field oscillated along the x-axis, and the incident amplitudes were normalized to 1.
Fig. 4.
Fig. 4. (a) Schematic diagrams illustrate scalable fabrication process of IPAs using colloidal lithography combined two steps of RIE. (b) SEM image (top) and photo (bottom) of the fabricated IPA. Arrows indicate typical defects of periodic ITO disk array. (c) SEM images of two fabricated IPAs having diameters of 1.62 μm (S1) and 2.01 μm (S2) with the same other parameters (p = 3 μm, t = 0.4 μm). (d) Simulated absorptivities and (e) measured absorptivities of S1 (blue curves) and S2 (red curves).
Fig. 5.
Fig. 5. Polarization-independent absorptivity of IPA with geometrical parameters of d = 2.01 μm, p = 3 μm, t = 0.4 μm: (a) Simulation and (b) measurement.
Fig. 6.
Fig. 6. (a) Schematic diagrams of emissivity measurements. (b) Measured emission spectra of IPA – S2 at different temperatures ranging from 178 °C to 307 °C. Dashed black curve plots black body emission measured at 307 °C. (c) Simulated emissivity and (d) measured emissivity of S1 and S2.
Fig. 7.
Fig. 7. (a) Absorptivity of IPA (S2) after operating at 307 °C (top) and 590 °C (bottom). (b) Top-view and (c) Cross-sectional view SEM images of IPA after operating at 590 °C. (d) – (g) EDX elemental maps of IPA corresponding to SEM image in (c).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

εmεdεm+εd=sin2θ+2p(i+j)λsinθ+43p2(i2+ij+j2)λ2
A=1TR

Metrics