Abstract

We demonstrate the generation of a supercontinuum spanning more than 1.5 octaves over the 1.2–3.7 µm range in a silicon nitride waveguide using sub-40-fs pulses at 2.35 µm generated by a 75 MHz Kerr-lens mode-locked Cr:ZnS laser.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser

Shangran Xie, Nikolai Tolstik, John C. Travers, Evgeni Sorokin, Celine Caillaud, Johann Troles, Philip St.J. Russell, and Irina T. Sorokina
Opt. Express 24(11) 12406-12413 (2016)

Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths

Marco A. G. Porcel, Florian Schepers, Jörn P. Epping, Tim Hellwig, Marcel Hoekman, René G. Heideman, Peter J. M. van der Slot, Chris J. Lee, Robert Schmidt, Rudolf Bratschitsch, Carsten Fallnich, and Klaus-J. Boller
Opt. Express 25(2) 1542-1554 (2017)

Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller
Opt. Express 23(12) 15440-15451 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
    [Crossref]
  2. S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+ :ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
    [Crossref]
  3. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
    [Crossref]
  4. S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens modelocked polycrystalline Cr2+:ZnS laser with 0.5 MW peak power,” in Proc. Adv. Solid-State Lasers, 2015, Paper AW4A.3.
  5. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.
  6. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multiwatt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6µm,” Opt. Express 24(2), 1616–1623 (2016).
    [Crossref]
  7. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
    [Crossref]
  8. S. Xie, N. Tolstik, J. C. Travers, E. Sorokin, C. Caillaud, J. Troles, P. S. J. Russell, and I. T. Sorokina, “Coherent octave-spanning mid-infrared supercontinuum generated in As2S3–silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser,” Opt. Express 24(11), 12406–12413 (2016).
    [Crossref]
  9. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(21), 5117–5120 (2015).
    [Crossref]
  10. H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
    [Crossref]
  11. K. Dolgaleva, W. C. Ng, L. Qian, S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35(24), 4093–4095 (2010).
    [Crossref]
  12. R. K. W. Lau, M. R. E. Lamont, A. G. Griffin, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39(15), 4518–4521 (2014).
    [Crossref]
  13. M. R. E. Lamont, B. Luther-Davis, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [Crossref]
  14. J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton micro combs for photonic integration,” Optica 5(10), 1347–1353 (2018).
    [Crossref]
  15. V. Brasch, Q.-F. Chen, S. Schiller, and T. J. Kippenberg, “Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics,” Opt. Express 22(25), 30786–30794 (2014).
    [Crossref]
  16. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
    [Crossref]
  17. M. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884–892 (2018).
    [Crossref]
  18. M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
    [Crossref]
  19. J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

2018 (6)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton micro combs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

M. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884–892 (2018).
[Crossref]

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

2017 (1)

2016 (2)

2015 (2)

2014 (3)

2010 (1)

2008 (1)

Aitchison, S.

Billat, A.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Brasch, V.

Bres, C.-S.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Caillaud, C.

Camasta, M. C.

Chen, Q.-F.

Choi, D.-Y.

Dergachev, A.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Dolgaleva, K.

Du, B.

Eggleton, B. J.

Engelsen, N. J.

Fedorov, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Gaeta, A. L.

Gapontsev, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multiwatt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+ :ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens modelocked polycrystalline Cr2+:ZnS laser with 0.5 MW peak power,” in Proc. Adv. Solid-State Lasers, 2015, Paper AW4A.3.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.

Geiselmann, M.

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Ghadiani, B.

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Grassani, D.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Griffin, A. G.

Guo, H.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton micro combs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Herkommer, C.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Johnson, A. R.

Joshi, C.

Karpov, M.

Keller, U.

Kippenberg, T.

M. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884–892 (2018).
[Crossref]

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Kippenberg, T. J.

Klenner, A.

Lamb, E. S.

Lamont, M. R. E.

Lau, R. K. W.

Lipson, M.

Liu, J.

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton micro combs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

M. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884–892 (2018).
[Crossref]

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Luke, K.

Luther-Davis, B.

Madden, S.

Martyshkin, D.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Mayer, A. S.

Mirov, M.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multiwatt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+ :ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.

S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens modelocked polycrystalline Cr2+:ZnS laser with 0.5 MW peak power,” in Proc. Adv. Solid-State Lasers, 2015, Paper AW4A.3.

Mirov, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multiwatt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.

Morais, T.

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884–892 (2018).
[Crossref]

Moskalev, I.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multiwatt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.

Ng, W. C.

Okawachi, Y.

Peppers, J.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Pfeiffer, M.

Pfeiffer, M. H. P.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Pfeiffer, M. P.

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884–892 (2018).
[Crossref]

Pfeiffer, M.H.P.

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Qian, L.

Raja, A. S.

Raja, A.S.

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Russell, P. S. J.

Schiller, S.

Smolski, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.

Sorel, M.

Sorokin, E.

Sorokina, I. T.

Tolstik, N.

Travers, J. C.

Troles, J.

Vasilyev, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multiwatt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+ :ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens modelocked polycrystalline Cr2+:ZnS laser with 0.5 MW peak power,” in Proc. Adv. Solid-State Lasers, 2015, Paper AW4A.3.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.

Weng, W.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Wise, F. W.

Xie, S.

Zervas, M.

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton micro combs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Zhang, C.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

M. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

Nat. Photonics (1)

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Bres, and T. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (2)

Science (1)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Other (3)

S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens modelocked polycrystalline Cr2+:ZnS laser with 0.5 MW peak power,” in Proc. Adv. Solid-State Lasers, 2015, Paper AW4A.3.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz,” in Proc. Laser Congress 2016 (ASSL, LSC, LAC), 2016, Paper AW1A.2.

J. Liu, A.S. Raja, M.H.P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” arXiv:1803.02662 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Simulation of pulse broadening pumped at 2.4 µm wavelength, 50 fs pulse duration, 6 kW peak power. (i) Input spectrum, (ii) Output spectrum for 1.3 µm wide waveguide, (iii) SC spectrum generated in Si3N4 waveguide. (b) Dispersion of waveguides with width spaning in 1.0-1.5 µm range.
Fig. 2.
Fig. 2. (a) Schematic representation of Si3N4 waveguide (b) SEM image of taper-end cross-section (c) SEM image of waveguide cross-section. Red shaded area indicates the Si3N4 and the blue area is the silica cladding.
Fig. 3.
Fig. 3. Spectra of pulses of CLPF laser measured at 5.5 W pump power. Fundamental MIR band of the spectrum is on the right, second harmonic band is on the left. The same spectra are shown in logarithmic (top) and linear (bottom) scales. Numbers near the spectra show measured average power (P), central wavelength (λC), and bandwidth (Δλ, Δν full width at half maximum).
Fig. 4.
Fig. 4. Experimental set up for SC generation and autocorrelations of Cr:ZnS laser output pulses measured after optical isolator and molded aspheric lens for horizontal polarization.
Fig. 5.
Fig. 5. (a) (i) Supercontinuum spectrum generated in “E7 5 mm W1 #8” waveguide at 260 mW incident average power, 45 fs pulse duration, 75 MHz rate and horizontal polarization (Black); (ii) spectrum of CLPF laser system (Green); (iii) spectrum of near IR second harmonic output of CLPF laser system shown for assessment of possibility of using 2nd harmonic generated in laser gain element and SC for f-2f stabilization of the Cr:ZnS pump source (Red); (vi) Visible emission - the third harmonic generation in Si3N4 waveguide (Blue). (b) Picture of the set-up during operation, showing on the left the black diamond lens, at the center Si3N4 waveguide shining red, and at the right – gold parabolic reflector.

Metrics