Abstract

We present a method for the production of polycrystalline Si (poly-Si) photonic micro-structures based on laser writing. The method consists of local laser-induced crystallization of amorphous silicon (a-Si) followed by selective etching in chemical agents that act preferentially on the a-Si material, consequently revealing the poly-Si content of the film. We have studied the characteristics of these structures as a function of the laser processing parameters and we demonstrate their potential photonic functionality by fabricating polycrystalline silicon ridge optical waveguides. Preliminary waveguide transmission performance results indicated an optical transmission loss of 9 dB/cm in these unrefined devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Laser crystallized low-loss polycrystalline silicon waveguides

Yohann Franz, Antoine F. J. Runge, Swe Z. Oo, Gregorio Jimenez-Martinez, Noel Healy, Ali Khokhar, Antulio Tarazona, Harold M. H. Chong, Sakellaris Mailis, and Anna C. Peacock
Opt. Express 27(4) 4462-4470 (2019)

Microstructure of femtosecond laser-induced grating in amorphous silicon

Geon Joon Lee, Jisun Park, Eun Kyu Kim, YoungPak Lee, Kyung Moon Kim, Hyeonsik Cheong, Chong Seung Yoon, Yong-Duck Son, and Jin Jang
Opt. Express 13(17) 6445-6453 (2005)

Hot-wire chemical vapor deposition low-loss hydrogenated amorphous silicon waveguides for silicon photonic devices

Swe Z. Oo, Antulio Tarazona, Ali Z. Khokhar, Rafidah Petra, Yohann Franz, Goran Z. Mashanovich, Graham T. Reed, Anna C. Peacock, and Harold M. H. Chong
Photon. Res. 7(2) 193-200 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, “The optical age of silicon,” Nature 427(6975), 595–596 (2004).
    [Crossref]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  3. Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon ghz modulator,” Opt. Express 21(22), 26688–26692 (2013).
    [Crossref]
  4. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss ( 6.45db/cm) sub-micron polycrystalline silicon waveguide integrated with efficient sion waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
    [Crossref]
  5. J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20(7), 7243–7254 (2012).
    [Crossref]
  6. M. Douix, C. Baudot, D. Marris-Morini, A. Valéry, D. Fowler, P. Acosta-Alba, S. Kerdilès, C. Euvrard, R. Blanc, R. Beneyton, A. Souhaité, S. Crémer, N. Vulliet, L. Vivien, and F. Boeuf, “Low loss poly-silicon for high performance capacitive silicon modulators,” Opt. Express 26(5), 5983–5990 (2018).
    [Crossref]
  7. Y. Franz, A. F. J. Runge, S. Z. Oo, G. Jimenez-Martinez, N. Healy, A. Khokhar, A. Tarazona, H. M. H. Chong, S. Mailis, and A. C. Peacock, “Laser crystallized low-loss polycrystalline silicon waveguides,” Opt. Express 27(4), 4462–4470 (2019).
    [Crossref]
  8. J. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “Cw argon laser crystallization of silicon films: Structural properties,” J. Non-Cryst. Solids 352(9-20), 998–1002 (2006).
    [Crossref]
  9. N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
    [Crossref]
  10. R. E. Schropp, “Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451-452, 455–465 (2004).
    [Crossref]
  11. P. Brogueira, J. Conde, S. Arekat, and V. Chu, “Low filament temperature deposition of a-Si:H by hot-wire chemical vapor deposition,” J. Appl. Phys. 78(6), 3776–3783 (1995).
    [Crossref]
  12. K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, “Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors,” J. Non-Cryst. Solids 354(19-25), 2505–2508 (2008).
    [Crossref]
  13. J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
    [Crossref]
  14. A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
    [Crossref]
  15. N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
    [Crossref]

2019 (1)

2018 (1)

2016 (1)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

2014 (1)

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

2013 (1)

2012 (1)

2008 (2)

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss ( 6.45db/cm) sub-micron polycrystalline silicon waveguide integrated with efficient sion waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref]

K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, “Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors,” J. Non-Cryst. Solids 354(19-25), 2505–2508 (2008).
[Crossref]

2007 (1)

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

2006 (2)

J. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “Cw argon laser crystallization of silicon films: Structural properties,” J. Non-Cryst. Solids 352(9-20), 998–1002 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

2004 (2)

G. T. Reed, “The optical age of silicon,” Nature 427(6975), 595–596 (2004).
[Crossref]

R. E. Schropp, “Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451-452, 455–465 (2004).
[Crossref]

2003 (1)

J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
[Crossref]

1995 (1)

P. Brogueira, J. Conde, S. Arekat, and V. Chu, “Low filament temperature deposition of a-Si:H by hot-wire chemical vapor deposition,” J. Appl. Phys. 78(6), 3776–3783 (1995).
[Crossref]

Abbadie, A.

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

Acosta-Alba, P.

Arekat, S.

P. Brogueira, J. Conde, S. Arekat, and V. Chu, “Low filament temperature deposition of a-Si:H by hot-wire chemical vapor deposition,” J. Appl. Phys. 78(6), 3776–3783 (1995).
[Crossref]

Badding, J. V.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Ballato, J.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Baudot, C.

Bedell, S. W.

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

Beneyton, R.

Blanc, R.

Boeuf, F.

Brogueira, P.

P. Brogueira, J. Conde, S. Arekat, and V. Chu, “Low filament temperature deposition of a-Si:H by hot-wire chemical vapor deposition,” J. Appl. Phys. 78(6), 3776–3783 (1995).
[Crossref]

Brunier, F.

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

Bulgakova, N. M.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Cayrefourcq, I.

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

Chan, K.-Y.

K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, “Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors,” J. Non-Cryst. Solids 354(19-25), 2505–2508 (2008).
[Crossref]

Cheng, H. Y.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Chong, H. M. H.

Chu, V.

P. Brogueira, J. Conde, S. Arekat, and V. Chu, “Low filament temperature deposition of a-Si:H by hot-wire chemical vapor deposition,” J. Appl. Phys. 78(6), 3776–3783 (1995).
[Crossref]

Conde, J.

P. Brogueira, J. Conde, S. Arekat, and V. Chu, “Low filament temperature deposition of a-Si:H by hot-wire chemical vapor deposition,” J. Appl. Phys. 78(6), 3776–3783 (1995).
[Crossref]

Crémer, S.

Day, T. D.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Douix, M.

Euvrard, C.

Fang, Q.

Fathpour, S.

Figuet, C.

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

Filik, J.

J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
[Crossref]

Fokine, M.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Fowler, D.

Franz, Y.

Y. Franz, A. F. J. Runge, S. Z. Oo, G. Jimenez-Martinez, N. Healy, A. Khokhar, A. Tarazona, H. M. H. Chong, S. Mailis, and A. C. Peacock, “Laser crystallized low-loss polycrystalline silicon waveguides,” Opt. Express 27(4), 4462–4470 (2019).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Gibson, U. J.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Gordijn, A.

K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, “Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors,” J. Non-Cryst. Solids 354(19-25), 2505–2508 (2008).
[Crossref]

Hallam, K.

J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
[Crossref]

Hartmann, J. M.

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

Hawkins, T.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Healy, N.

Y. Franz, A. F. J. Runge, S. Z. Oo, G. Jimenez-Martinez, N. Healy, A. Khokhar, A. Tarazona, H. M. H. Chong, S. Mailis, and A. C. Peacock, “Laser crystallized low-loss polycrystalline silicon waveguides,” Opt. Express 27(4), 4462–4470 (2019).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Jalali, B.

Jimenez-Martinez, G.

Jones, M.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Kerdilès, S.

Khokhar, A.

Knipp, D.

K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, “Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors,” J. Non-Cryst. Solids 354(19-25), 2505–2508 (2008).
[Crossref]

Kramer, S.

Kwong, D. L.

Lee, Y. H. D.

Li, H.

Lipson, M.

Lo, G. Q.

Mailis, S.

Y. Franz, A. F. J. Runge, S. Z. Oo, G. Jimenez-Martinez, N. Healy, A. Khokhar, A. Tarazona, H. M. H. Chong, S. Mailis, and A. C. Peacock, “Laser crystallized low-loss polycrystalline silicon waveguides,” Opt. Express 27(4), 4462–4470 (2019).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Marris-Morini, D.

May, P.

J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
[Crossref]

Mehta, K.

Michaud, J.

J. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “Cw argon laser crystallization of silicon films: Structural properties,” J. Non-Cryst. Solids 352(9-20), 998–1002 (2006).
[Crossref]

Mohammed-Brahim, T.

J. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “Cw argon laser crystallization of silicon films: Structural properties,” J. Non-Cryst. Solids 352(9-20), 998–1002 (2006).
[Crossref]

Oo, S. Z.

Orcutt, J. S.

Peacock, A. C.

Y. Franz, A. F. J. Runge, S. Z. Oo, G. Jimenez-Martinez, N. Healy, A. Khokhar, A. Tarazona, H. M. H. Chong, S. Mailis, and A. C. Peacock, “Laser crystallized low-loss polycrystalline silicon waveguides,” Opt. Express 27(4), 4462–4470 (2019).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Pearce, S.

J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
[Crossref]

Ram, R. J.

Reed, G. T.

G. T. Reed, “The optical age of silicon,” Nature 427(6975), 595–596 (2004).
[Crossref]

Rogel, R.

J. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “Cw argon laser crystallization of silicon films: Structural properties,” J. Non-Cryst. Solids 352(9-20), 998–1002 (2006).
[Crossref]

Runge, A. F. J.

Sadana, D. K.

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

Sarret, M.

J. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “Cw argon laser crystallization of silicon films: Structural properties,” J. Non-Cryst. Solids 352(9-20), 998–1002 (2006).
[Crossref]

Sazio, P. J. A.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Schropp, R. E.

R. E. Schropp, “Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451-452, 455–465 (2004).
[Crossref]

Song, J. F.

Souhaité, A.

Sparks, J. R.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Stiebig, H.

K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, “Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors,” J. Non-Cryst. Solids 354(19-25), 2505–2508 (2008).
[Crossref]

Stojanovic, V.

Tang, S. D.

Tao, S. H.

Tarazona, A.

Thompson, M. O.

Valéry, A.

Vivien, L.

Vulliet, N.

Wild, R.

J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
[Crossref]

Yu, M. B.

Adv. Opt. Mater. (1)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “Co2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Diamond Relat. Mater. (1)

J. Filik, P. May, S. Pearce, R. Wild, and K. Hallam, “XPS and laser Raman analysis of hydrogenated amorphous carbon films,” Diamond Relat. Mater. 12(3-7), 974–978 (2003).
[Crossref]

J. Appl. Phys. (1)

P. Brogueira, J. Conde, S. Arekat, and V. Chu, “Low filament temperature deposition of a-Si:H by hot-wire chemical vapor deposition,” J. Appl. Phys. 78(6), 3776–3783 (1995).
[Crossref]

J. Electrochem. Soc. (1)

A. Abbadie, S. W. Bedell, J. M. Hartmann, D. K. Sadana, F. Brunier, C. Figuet, and I. Cayrefourcq, “Study of HCl and secco defect etching for characterization of thick sSOI,” J. Electrochem. Soc. 154(8), H713–H719 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (2)

K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, “Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors,” J. Non-Cryst. Solids 354(19-25), 2505–2508 (2008).
[Crossref]

J. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “Cw argon laser crystallization of silicon films: Structural properties,” J. Non-Cryst. Solids 352(9-20), 998–1002 (2006).
[Crossref]

Nat. Mater. (1)

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Nature (1)

G. T. Reed, “The optical age of silicon,” Nature 427(6975), 595–596 (2004).
[Crossref]

Opt. Express (5)

Thin Solid Films (1)

R. E. Schropp, “Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451-452, 455–465 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the process showing (a) a-Si film deposition by HWCVD on a planar substrate (b) spatially selective laser exposure by scanning of a focussed beam on the surface of the film to produce poly-Si tracks and (c) poly-Si tracks transform into ridge structures after selective etching. Different coloured tracks represent different irradiation conditions.
Fig. 2.
Fig. 2. Optical microscopy image of laser irradiated tracks on a planar a-Si film. The tracks are arranged in pairs of identical laser irradiation confitions. The laser intensity increases from right to left.
Fig. 3.
Fig. 3. Raman spectra obtained from the a-Si film (blue) and on a laser irradiated track (orange).
Fig. 4.
Fig. 4. Optical microscopy images of a laser irradiated track (a) before and (b) after Secco-etching. Such images were used to measure the widths of the tracks. The substrate is silica-on-silicon.
Fig. 5.
Fig. 5. Plots of the measured laser track widths before etching and ridge widths after etching as a function of laser intensity for different laser spot sizes (measured at 1/e2), 3 $\mu$m, 1.2 $\mu$m and 0.8 $\mu$m, (using $\times$10, $\times$20 and $\times$40 microscope objectives respectively). Plot (a) corresponds to initial a-Si film thicknesses of 210 nm and plot (b) to 425 nm
Fig. 6.
Fig. 6. SEM images of laser written poly-Si superstructures; top view SEM images of etched ridges on (a) silica-on-silicon and (b) on SiO2 substrate. The two ridges were prepared using the same laser irradiation conditions. (c) Polished end face of a single ridge fabricated on SiO2. The dash-line outlines the trapezoid shape of the ridge cross section. More complex poly-Si ridge structures: (d) ring ($20\mu m$ radius), next to a straight ridge, and (e) a Y-junction.
Fig. 7.
Fig. 7. Optical loss (in dB) as a function of the waveguide length. These measurements were obtained by successive polishing of the output face of the sample. The inset shows a near field image of the mode profile, captured on an IR camera.

Metrics