Abstract

We propose a simple and effective method of liquid crystal photoalignment that does not require any preliminary treatment of the cell substrates. To this aim, a small amount (0.1 wt %) of azobenzene carboxylic acid is added into the nematic liquid crystal. After filling the liquid crystal cell, a part of the dopant molecules is spontaneously adsorbed and attached to the glass surface by hydrogen bonds. This allows one to switch the boundary conditions of liquid crystal between homeotropic and planar due to the reversible trans-cis photoisomerization.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Homeotropic orientation of nematic liquid crystals induced by dissolving polypropyleneimine dendrimer having peripheral mesogens

Osamu Haba, Daigo Hiratsuka, Takenori Shiraiwa, Nami Funakoshi, Hiroshi Awano, Tomonori Koda, Tatsuhiro Takahashi, Koichiro Yonetake, Musun Kwak, Yuichi Momoi, Nakwon Kim, Sangpyo Hong, Dongwoo Kang, and Youngseok Choi
Opt. Mater. Express 4(5) 934-943 (2014)

Photo-stimulated phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals

Sudarshan Kundu and Shin-Woong Kang
Opt. Express 21(25) 31324-31329 (2013)

Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant

Yu-Cheng Hsiao, Kuan-Chung Huang, and Wei Lee
Opt. Express 25(3) 2687-2693 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Menzel, “Tuned, driven, and active soft matter,” Phys. Rep. 554, 1–45 (2015).
    [Crossref]
  2. H. K. Bisoyi and Q. Li, “Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications,” Chem. Rev. 116(24), 15089–15166 (2016).
    [Crossref]
  3. A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
    [Crossref]
  4. V. P. Shibaev and A. Yu. Bobrovsky, “Liquid crystalline polymers: development trends and photocontrollable materials,” Russ. Chem. Rev. 86(11), 1024–1072 (2017).
    [Crossref]
  5. K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
    [Crossref]
  6. O. Yaroshchuk and Yu. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
    [Crossref]
  7. T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C 4(34), 7895–7910 (2016).
    [Crossref]
  8. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
    [Crossref]
  9. V. Chigrinov, “Photoaligning and Photopatterning — A New Challenge in Liquid Crystal Photonics,” Crystals 3(1), 149–162 (2013).
    [Crossref]
  10. K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D: Appl. Phys. 46(4), 045102 (2013).
    [Crossref]
  11. D. Voloshchenko, A. Khyzhnyak, Yu. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
    [Crossref]
  12. D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
    [Crossref]
  13. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
    [Crossref]
  14. I. C. Khoo, S. Slussarenko, B. D. Guenther, M.-Y. Shih, P. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23(4), 253–255 (1998).
    [Crossref]
  15. L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233(4-6), 417–424 (2004).
    [Crossref]
  16. G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
    [Crossref]
  17. H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
    [Crossref]
  18. A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
    [Crossref]
  19. S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
    [Crossref]
  20. S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
    [Crossref]
  21. S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo-Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification,” Adv. Mater. 25(24), 3365–3370 (2013).
    [Crossref]
  22. L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstituted azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
    [Crossref]
  23. A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, and S. Kralj, “Light and phospholipid driven structural transitions in nematic microdroplets,” Appl. Phys. Lett. 105(15), 151606 (2014).
    [Crossref]
  24. G. Magyar, J. West, Yu. Reznikov, and O. Yaroshchuk, “Light Induced LC Alignment on the Isotropic Non-Photosensitive Surface,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329(1), 71–79 (1999).
    [Crossref]
  25. Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
    [Crossref]
  26. D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
    [Crossref]
  27. I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
    [Crossref]
  28. Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined ortho -fluorination and -amination,” Chem. Commun. 53(93), 12520–12523 (2017).
    [Crossref]

2018 (3)

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
[Crossref]

2017 (3)

V. P. Shibaev and A. Yu. Bobrovsky, “Liquid crystalline polymers: development trends and photocontrollable materials,” Russ. Chem. Rev. 86(11), 1024–1072 (2017).
[Crossref]

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined ortho -fluorination and -amination,” Chem. Commun. 53(93), 12520–12523 (2017).
[Crossref]

2016 (3)

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

H. K. Bisoyi and Q. Li, “Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref]

T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C 4(34), 7895–7910 (2016).
[Crossref]

2015 (2)

A. M. Menzel, “Tuned, driven, and active soft matter,” Phys. Rep. 554, 1–45 (2015).
[Crossref]

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

2014 (1)

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, and S. Kralj, “Light and phospholipid driven structural transitions in nematic microdroplets,” Appl. Phys. Lett. 105(15), 151606 (2014).
[Crossref]

2013 (5)

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo-Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref]

V. Chigrinov, “Photoaligning and Photopatterning — A New Challenge in Liquid Crystal Photonics,” Crystals 3(1), 149–162 (2013).
[Crossref]

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D: Appl. Phys. 46(4), 045102 (2013).
[Crossref]

2012 (1)

O. Yaroshchuk and Yu. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

2008 (1)

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

2004 (2)

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
[Crossref]

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233(4-6), 417–424 (2004).
[Crossref]

2000 (3)

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstituted azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref]

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

1999 (1)

G. Magyar, J. West, Yu. Reznikov, and O. Yaroshchuk, “Light Induced LC Alignment on the Isotropic Non-Photosensitive Surface,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329(1), 71–79 (1999).
[Crossref]

1998 (1)

1995 (1)

D. Voloshchenko, A. Khyzhnyak, Yu. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[Crossref]

1988 (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Ahmed, Z.

Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined ortho -fluorination and -amination,” Chem. Commun. 53(93), 12520–12523 (2017).
[Crossref]

Aoki, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Araoka, F.

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Bisoyi, H. K.

H. K. Bisoyi and Q. Li, “Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref]

Bobrovsky, A. Yu.

V. P. Shibaev and A. Yu. Bobrovsky, “Liquid crystalline polymers: development trends and photocontrollable materials,” Russ. Chem. Rev. 86(11), 1024–1072 (2017).
[Crossref]

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

Boiko, N. I.

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
[Crossref]

Bubnov, A.

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

Bugakov, M. A.

S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
[Crossref]

Chattham, N.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

Chen, P.

Cheng, K.-T.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
[Crossref]

Chigrinov, V.

V. Chigrinov, “Photoaligning and Photopatterning — A New Challenge in Liquid Crystal Photonics,” Crystals 3(1), 149–162 (2013).
[Crossref]

Choi, Y.-J.

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

Di Fabrizio, M.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233(4-6), 417–424 (2004).
[Crossref]

Dubtsov, A. V.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, and S. Kralj, “Light and phospholipid driven structural transitions in nematic microdroplets,” Appl. Phys. Lett. 105(15), 151606 (2014).
[Crossref]

Emelyanenko, A. V.

S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
[Crossref]

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

Eremin, A.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

Fedorenko, D.

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

Francescangeli, O.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233(4-6), 417–424 (2004).
[Crossref]

Fu, T.-L.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
[Crossref]

Fuh, A. Y.-G.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
[Crossref]

Glogarová, M.

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

Guenther, B. D.

Ha, K.

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

Haba, O.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Hamplová, V.

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

Hirankittiwong, P.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

Hosoki, A.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Ichimura, K.

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref]

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstituted azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Ishikawa, K.

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Ito, A.

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

Jeong, K.-U.

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

Kang, D.-G.

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

Kang, S.-W.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo-Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref]

Karapinar, R.

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

Kašpar, M.

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

Khokhlov, A. R.

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

Khoo, I. C.

Khyzhnyak, A.

D. Voloshchenko, A. Khyzhnyak, Yu. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[Crossref]

Kiang-Ia, J.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

Kim, C.

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

Kim, D.-Y.

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

Kim, J. H.

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

Kim, J.-H.

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

Komitov, L.

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstituted azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

Kralj, S.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, and S. Kralj, “Light and phospholipid driven structural transitions in nematic microdroplets,” Appl. Phys. Lett. 105(15), 151606 (2014).
[Crossref]

Kumar, S.

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

Kundu, S.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo-Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref]

Kuo, C.-T.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D: Appl. Phys. 46(4), 045102 (2013).
[Crossref]

Lavrentovich, O.

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

Lee, B.

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

Lee, C.-R.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D: Appl. Phys. 46(4), 045102 (2013).
[Crossref]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
[Crossref]

Lee, G.

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Lee, J. H.

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

Lee, M.-H.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo-Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref]

Lee, S. H.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo-Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref]

Lee, S.-A.

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

Li, Q.

H. K. Bisoyi and Q. Li, “Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref]

Lin, C.-H.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D: Appl. Phys. 46(4), 045102 (2013).
[Crossref]

Liu, J. H.

S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
[Crossref]

Liu, J.-H.

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

Lucchetti, L.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233(4-6), 417–424 (2004).
[Crossref]

Magyar, G.

G. Magyar, J. West, Yu. Reznikov, and O. Yaroshchuk, “Light Induced LC Alignment on the Isotropic Non-Photosensitive Surface,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329(1), 71–79 (1999).
[Crossref]

Menzel, A. M.

A. M. Menzel, “Tuned, driven, and active soft matter,” Phys. Rep. 554, 1–45 (2015).
[Crossref]

Mo, T.-S.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
[Crossref]

Momoi, Y.

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Nádasi, H.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

Ostroverkhova, O.

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

Ouskova, E.

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

Park, M.

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

Pasechnik, S. V.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, and S. Kralj, “Light and phospholipid driven structural transitions in nematic microdroplets,” Appl. Phys. Lett. 105(15), 151606 (2014).
[Crossref]

Priimagi, A.

Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined ortho -fluorination and -amination,” Chem. Commun. 53(93), 12520–12523 (2017).
[Crossref]

Reshetnyak, V.

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

D. Voloshchenko, A. Khyzhnyak, Yu. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[Crossref]

Reznikov, Yu.

O. Yaroshchuk and Yu. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

G. Magyar, J. West, Yu. Reznikov, and O. Yaroshchuk, “Light Induced LC Alignment on the Isotropic Non-Photosensitive Surface,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329(1), 71–79 (1999).
[Crossref]

D. Voloshchenko, A. Khyzhnyak, Yu. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[Crossref]

Rudyak, V. Yu

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

Seki, T.

T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C 4(34), 7895–7910 (2016).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Shibaev, V.

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

Shibaev, V. P.

V. P. Shibaev and A. Yu. Bobrovsky, “Liquid crystalline polymers: development trends and photocontrollable materials,” Russ. Chem. Rev. 86(11), 1024–1072 (2017).
[Crossref]

Shih, M.-Y.

Shmeliova, D. V.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, and S. Kralj, “Light and phospholipid driven structural transitions in nematic microdroplets,” Appl. Phys. Lett. 105(15), 151606 (2014).
[Crossref]

Shvetsov, S. A.

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
[Crossref]

Siiskonen, A.

Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined ortho -fluorination and -amination,” Chem. Commun. 53(93), 12520–12523 (2017).
[Crossref]

Simoni, F.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233(4-6), 417–424 (2004).
[Crossref]

Singer, K. D.

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

Slussarenko, S.

Slyusarenko, K.

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

Son, I.

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

Stannarius, R.

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

Strigazzi, A.

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstituted azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

Suzuki, Y.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Takezoe, H.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Virkki, M.

Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined ortho -fluorination and -amination,” Chem. Commun. 53(93), 12520–12523 (2017).
[Crossref]

Voloshchenko, D.

D. Voloshchenko, A. Khyzhnyak, Yu. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[Crossref]

Wang, B.

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

West, J.

G. Magyar, J. West, Yu. Reznikov, and O. Yaroshchuk, “Light Induced LC Alignment on the Isotropic Non-Photosensitive Surface,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329(1), 71–79 (1999).
[Crossref]

West, J. L.

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

Wood, W. V.

Yaroshchuk, O.

O. Yaroshchuk and Yu. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

G. Magyar, J. West, Yu. Reznikov, and O. Yaroshchuk, “Light Induced LC Alignment on the Isotropic Non-Photosensitive Surface,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329(1), 71–79 (1999).
[Crossref]

Yonetake, K.

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Yoo, J. Y.

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

Yu, K.-Y.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D: Appl. Phys. 46(4), 045102 (2013).
[Crossref]

Zhang, Y.-S.

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, and K.-U. Jeong, “Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device,” ACS Appl. Mater. Interfaces 7(11), 6195–6204 (2015).
[Crossref]

Adv. Mater. (1)

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo-Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, and S. Kralj, “Light and phospholipid driven structural transitions in nematic microdroplets,” Appl. Phys. Lett. 105(15), 151606 (2014).
[Crossref]

Chem. Commun. (1)

Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined ortho -fluorination and -amination,” Chem. Commun. 53(93), 12520–12523 (2017).
[Crossref]

Chem. Rev. (2)

K. Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref]

H. K. Bisoyi and Q. Li, “Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref]

Crystals (1)

V. Chigrinov, “Photoaligning and Photopatterning — A New Challenge in Liquid Crystal Photonics,” Crystals 3(1), 149–162 (2013).
[Crossref]

J. Mater. Chem. (1)

O. Yaroshchuk and Yu. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

J. Mater. Chem. C (1)

T. Seki, “Light-directed alignment, surface morphing and related processes: recent trends,” J. Mater. Chem. C 4(34), 7895–7910 (2016).
[Crossref]

J. Mol. Liq. (1)

S. A. Shvetsov, V. Yu Rudyak, A. V. Emelyanenko, N. I. Boiko, Y.-S. Zhang, J.-H. Liu, and A. R. Khokhlov, “Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface,” J. Mol. Liq. 267, 222–228 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (1)

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D: Appl. Phys. 46(4), 045102 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Voloshchenko, A. Khyzhnyak, Yu. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[Crossref]

Langmuir (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Liq. Cryst. (3)

A. Eremin, H. Nádasi, P. Hirankittiwong, J. Kiang-Ia, N. Chattham, O. Haba, K. Yonetake, and H. Takezoe, “Azodendrimers as a photoactive interface for liquid crystals,” Liq. Cryst. 45(13-15), 2121–2131 (2018).
[Crossref]

I. Son, B. Lee, C. Kim, J. H. Kim, J. Y. Yoo, and J. H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq. Cryst. 43(4), 517–523 (2016).
[Crossref]

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstituted azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

Macromolecules (1)

A. Yu. Bobrovsky, V. Shibaev, A. Bubnov, V. Hamplová, M. Kašpar, and M. Glogarová, “Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates,” Macromolecules 46(11), 4276–4284 (2013).
[Crossref]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (1)

G. Magyar, J. West, Yu. Reznikov, and O. Yaroshchuk, “Light Induced LC Alignment on the Isotropic Non-Photosensitive Surface,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329(1), 71–79 (1999).
[Crossref]

Opt. Commun. (1)

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233(4-6), 417–424 (2004).
[Crossref]

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

G. Lee, F. Araoka, K. Ishikawa, Y. Momoi, O. Haba, K. Yonetake, and H. Takezoe, “Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer,” Part. Part. Syst. Charact. 30(10), 912 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

H. Nádasi, R. Stannarius, A. Eremin, A. Ito, K. Ishikawa, O. Haba, K. Yonetake, H. Takezoe, and F. Araoka, “Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers,” Phys. Chem. Chem. Phys. 19(11), 7597–7606 (2017).
[Crossref]

Phys. Rep. (1)

A. M. Menzel, “Tuned, driven, and active soft matter,” Phys. Rep. 554, 1–45 (2015).
[Crossref]

Phys. Rev. E (2)

D. Fedorenko, K. Slyusarenko, E. Ouskova, V. Reshetnyak, K. Ha, R. Karapinar, and Yu. Reznikov, “Light-induced gliding of the easy orientation axis of a dye-doped nematic liquid crystal,” Phys. Rev. E 77(6), 061705 (2008).
[Crossref]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69(3), 031704 (2004).
[Crossref]

Phys. Rev. Lett. (1)

Yu. Reznikov, O. Ostroverkhova, K. D. Singer, J.-H. Kim, S. Kumar, O. Lavrentovich, B. Wang, and J. L. West, “Photoalignment of Liquid Crystals by Liquid Crystals,” Phys. Rev. Lett. 84(9), 1930–1933 (2000).
[Crossref]

Polym. Sci., Ser. C (1)

S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, and J. H. Liu, “Photo-orientation at the interface between thermotropic nematic liquid crystal and water caused by azobenzene polymer additives with different polymerization degrees,” Polym. Sci., Ser. C 60(1), 72–77 (2018).
[Crossref]

Russ. Chem. Rev. (1)

V. P. Shibaev and A. Yu. Bobrovsky, “Liquid crystalline polymers: development trends and photocontrollable materials,” Russ. Chem. Rev. 86(11), 1024–1072 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Structural formulas of HOAC (a) and HOA (b). Normalized spectral absorbance of HOAC and HOA solution in tetrahydrofuran (c) corresponding to trans- (solid lines) and cis-forms (dashed lines).
Fig. 2.
Fig. 2. Microscope images of NLC (E7+0.1% HOAC) cell in crossed polarizers before (a, b) and after (c, d) the UV illumination ($\lambda _{max}$ = 365 nm, $I$ = 1.2 mW/cm$^2$) at two sample orientations (e, f). P and A are the directions of polarizer and analyzer, E is the UV light polarization direction. Insertion in (a) is the conoscopic image of the NLC cell.
Fig. 3.
Fig. 3. Microscope images of NLC (E7+0.1% HOAC) cell in crossed polarizers during the illumination at $\lambda _{max}$ = 365 nm ($I$ = 1.2 mW/cm$^2$, linearly polarized light, experimental geometry is shown in Fig. 2(e)) at the exposure time $\tau _{exp}$: 0 s (a), 30 s (b), 40 s (c), 50 s (d), 60 s (e), 100 s (f); and during the consequent illumination at $\lambda _{max}$ = 466 nm ($I$ = 15 mW/cm$^2$, unpolarized light) at the exposure time: 0 s (g), 7 s (h), 9 s (i), 10 s (j), 11 s (k), 14 s (l).
Fig. 4.
Fig. 4. Microscope images in crossed (a, d) and parallel (b, e) polarizers of the NLC (E7+0.1% HOAC) cell with one polyimide-treated substrate possessing planar alignment along vector r before (a, b) and after (d, e) the illumination at $\lambda _{max}$ = 365 nm ($I$ = 1.2 mW/cm$^2$, $\tau _{exp}$ = 100 s, linearly polarized light, the experimental geometries for (a, d) and (b, e) are shown in (g) and (h)). Before the UV illumination the NLC film has a hybrid orientation (c), while after the illumination it has a twisted planar orientation (f). Blue dashes in (c, f) show schematically the NLC director projection on the image plane. Time dependences of the transmitted light intensity $I_{th}$ for NLC cells with one polyimide-treated substrate at different HAOC dopant concentrations (i). The sample was placed between crossed polarizers and illuminated by LED-1 with $\lambda _{max}$ = 365 nm,$I$ = 1.2 mW/cm$^2$, polarized light, the experimental geometry is shown in (g).

Metrics