Abstract

This work reports on the fabrication and subsequent supercontinuum generation in a Ge-As-Se-Te/Ge-As-Se core/clad chalcogenide step-index fiber with an elliptical-core and an ultra-high numerical aperture of 1.88 ± 0.02 from 2.5 - 15µm wavelength. The fiber has very low transmission loss of < 2dB/m from 5-11µm and a minimum loss of 0.72 ± 0.04dB/m at 8.56µm. Supercontinuum spanning from 2.1µm to 11.5µm with an average power of ∼6.5mW was achieved by pumping a ∼16cm fiber with a minor/major axis core diameter of 4.2/5.2µm with 250 fs pulses at 4.65µm wavelength and a repetition rate of 20.88MHz. The effect of the elliptical-core was investigated by means of mechanical rotation of the fiber relative to the linear pump polarization, and it was found to cause a shift in the supercontinuum spectral edges by several hundred nanometers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

Harshana G. Dantanarayana, Nabil Abdel-Moneim, Zhuoqi Tang, Lukasz Sojka, Slawomir Sujecki, David Furniss, Angela B. Seddon, Irnis Kubat, Ole Bang, and Trevor M. Benson
Opt. Mater. Express 4(7) 1444-1455 (2014)

Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics

Zhuoqi Tang, Vladimir S. Shiryaev, David Furniss, Lukasz Sojka, Slawomir Sujecki, Trevor M. Benson, Angela B. Seddon, and Mikhail F. Churbanov
Opt. Mater. Express 5(8) 1722-1737 (2015)

Ultra broadband mid-IR supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide graded-index photonic crystal fiber: design and analysis

A. G. N. Chaitanya, Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 55(36) 10138-10145 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  2. Y.-P. Tseng, P. Bouzy, C. Pedersen, N. Stone, and P. Tidemand-Lichtenberg, “Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications,” Biomed. Opt. Express 9(10), 4979–4987 (2018).
    [Crossref]
  3. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
    [Crossref]
  4. A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
    [Crossref]
  5. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  6. M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region,” Biomed. Opt. Express 9(4), 1762 (2018).
    [Crossref]
  7. J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
    [Crossref]
  8. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  9. A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
    [Crossref]
  10. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  11. K. J. Rao, Chalcogenide Glasses in Structural Chemistry of Glasses (Elsevier, 2002), Chapter 13, 513–534.
  12. D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics application,” Optoelectron.: Adv. Mater. Devices 6(1), 133–137 (2004).
  13. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
    [Crossref]
  14. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  15. J. A. Savage and S. Nielsen, “Chalcogenide Glasses Transmitting in the Infrared Between 1 and 20 µm - A State of the Art Review,” Infrared Phys. 5(4), 195–204 (1965).
    [Crossref]
  16. E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
    [Crossref]
  17. S. Sanghera, L. B. Shaw, and D. Aggarwal, “Applications of chalcogenide glass optical fibres,” C. R. Chim. 5(12), 873–883 (2002).
    [Crossref]
  18. J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
    [Crossref]
  19. M. Maeda and N. Y.- Zoe, Chemical Sensor Technology3rd ed. (Elsevier, 1991), p. 185.
  20. I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
    [Crossref]
  21. V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
    [Crossref]
  22. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
    [Crossref]
  23. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref]
  24. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  25. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  26. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge–Sb–Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref]
  27. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
    [Crossref]
  28. N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311–10319 (2019).
    [Crossref]
  29. A. R. Hilton, C. E. Jones, and M. Bran, “Non-oxide IVA — VA — VIA chalcogenide glasses .* Part i . Glass-forming regions and variations in physical properties,” Physics and Chemistry of Glass volume 7 (1966).
  30. J. A. Savage, Infra-Red Optical Materials and Their Antireflecion Coatings” W. T. Welfored, ed. (Adam Hilger Ltd, n.d.).
  31. Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).
  32. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
    [Crossref]
  33. V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).
  34. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
    [Crossref]
  35. D. Furniss and A. B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics, in Principles and Applications of Thermal Analysis” P. Gabbott, ed. Blackwell Publ. LtdOxf. UK (2008).
  36. Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid- infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
    [Crossref]
  37. M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
    [Crossref]
  38. C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
    [Crossref]
  39. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and E. M. Dianov, “Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,” Int. J. Optoelectron. 7, 237–254 (1992).
  40. M. F. Churbanov, I. V. Scripachev, and V. G. Borisevich, “Effect of Hydrogen Impurity on Optical Properties of As–Se and As–S Glass Systems,”Cent. Natl. Telecommun. Lannion Fr. 152–55 in Extended Abstracts of the 8th International Symposium on Halide Glasses Perros-Guirec, France, September 22–24 (1992).
  41. J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibres,” J. Mater. Sci. 24(12), 4293–4297 (1989).
    [Crossref]
  42. F. M. Ernsberger, “Molecular Water in Glass,” J. Am. Ceram. Soc. 60(1-2), 91–92 (1977).
    [Crossref]
  43. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref]
  44. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
    [Crossref]
  45. A. Sincore, J. Cook, F. Tan, A. El Halawany, A. Riggins, S. McDaniel, G. Cook, D. V. Martyshkin, V. V. Fedorov, S. B. Mirov, L. Shah, A. F. Abouraddy, M. C. Richardson, and K. L. Schepler, “High power single-mode delivery of mid-infrared sources through chalcogenide fiber,” Opt. Express 26(6), 7313–7323 (2018).
    [Crossref]
  46. M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
    [Crossref]
  47. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]

2019 (3)

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311–10319 (2019).
[Crossref]

2018 (7)

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

A. Sincore, J. Cook, F. Tan, A. El Halawany, A. Riggins, S. McDaniel, G. Cook, D. V. Martyshkin, V. V. Fedorov, S. B. Mirov, L. Shah, A. F. Abouraddy, M. C. Richardson, and K. L. Schepler, “High power single-mode delivery of mid-infrared sources through chalcogenide fiber,” Opt. Express 26(6), 7313–7323 (2018).
[Crossref]

M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region,” Biomed. Opt. Express 9(4), 1762 (2018).
[Crossref]

M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
[Crossref]

Y.-P. Tseng, P. Bouzy, C. Pedersen, N. Stone, and P. Tidemand-Lichtenberg, “Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications,” Biomed. Opt. Express 9(10), 4979–4987 (2018).
[Crossref]

2017 (4)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
[Crossref]

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

2016 (5)

2015 (3)

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid- infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

2014 (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

2011 (1)

E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
[Crossref]

2007 (1)

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

2005 (1)

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

2004 (2)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics application,” Optoelectron.: Adv. Mater. Devices 6(1), 133–137 (2004).

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

2002 (1)

S. Sanghera, L. B. Shaw, and D. Aggarwal, “Applications of chalcogenide glass optical fibres,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

1995 (1)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

1994 (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

1992 (2)

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and E. M. Dianov, “Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,” Int. J. Optoelectron. 7, 237–254 (1992).

J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
[Crossref]

1989 (1)

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibres,” J. Mater. Sci. 24(12), 4293–4297 (1989).
[Crossref]

1987 (1)

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

1977 (1)

F. M. Ernsberger, “Molecular Water in Glass,” J. Am. Ceram. Soc. 60(1-2), 91–92 (1977).
[Crossref]

1975 (1)

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

1965 (1)

J. A. Savage and S. Nielsen, “Chalcogenide Glasses Transmitting in the Infrared Between 1 and 20 µm - A State of the Art Review,” Infrared Phys. 5(4), 195–204 (1965).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Abouraddy, A. F.

Adam, J. L.

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

Adam, J.-L.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Adamu, A. I.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Aggarwal, D.

S. Sanghera, L. B. Shaw, and D. Aggarwal, “Applications of chalcogenide glass optical fibres,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

Agger, C. S.

Alamgir, I.

Amezcua-Correa, R.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Amraoui, M. E.

Antipov, S.

Bache, M.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Bang, O.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region,” Biomed. Opt. Express 9(4), 1762 (2018).
[Crossref]

M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Bobela, D.

E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
[Crossref]

Borisevich, V. G.

M. F. Churbanov, I. V. Scripachev, and V. G. Borisevich, “Effect of Hydrogen Impurity on Optical Properties of As–Se and As–S Glass Systems,”Cent. Natl. Telecommun. Lannion Fr. 152–55 in Extended Abstracts of the 8th International Symposium on Halide Glasses Perros-Guirec, France, September 22–24 (1992).

Borisova, Z. U.

Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).

Bouzy, P.

Bran, M.

A. R. Hilton, C. E. Jones, and M. Bran, “Non-oxide IVA — VA — VIA chalcogenide glasses .* Part i . Glass-forming regions and variations in physical properties,” Physics and Chemistry of Glass volume 7 (1966).

Brilland, L.

Caillaud, C.

Chen, F.

Cheng, T.

Churbanov, M. F.

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid- infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and E. M. Dianov, “Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,” Int. J. Optoelectron. 7, 237–254 (1992).

M. F. Churbanov, I. V. Scripachev, and V. G. Borisevich, “Effect of Hydrogen Impurity on Optical Properties of As–Se and As–S Glass Systems,”Cent. Natl. Telecommun. Lannion Fr. 152–55 in Extended Abstracts of the 8th International Symposium on Halide Glasses Perros-Guirec, France, September 22–24 (1992).

Cook, G.

Cook, J.

Dai, S.

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Dasa, M. K.

Devyatykh, G. G.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and E. M. Dianov, “Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,” Int. J. Optoelectron. 7, 237–254 (1992).

Dianov, E. M.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and E. M. Dianov, “Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,” Int. J. Optoelectron. 7, 237–254 (1992).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

El Halawany, A.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Engelsholm, R. D.

Ernsberger, F. M.

F. M. Ernsberger, “Molecular Water in Glass,” J. Am. Ceram. Soc. 60(1-2), 91–92 (1977).
[Crossref]

Farries, M.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

Fedorov, V. V.

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Fuerbach, A.

Furniss, D.

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid- infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

D. Furniss and A. B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics, in Principles and Applications of Thermal Analysis” P. Gabbott, ed. Blackwell Publ. LtdOxf. UK (2008).

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Gerasimenko, V. V.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Guo, W.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Haas, J.

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
[Crossref]

Habib, M. S.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Hannesschläger, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Hilton, A. R.

A. R. Hilton, C. E. Jones, and M. Bran, “Non-oxide IVA — VA — VIA chalcogenide glasses .* Part i . Glass-forming regions and variations in physical properties,” Physics and Chemistry of Glass volume 7 (1966).

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Howard, R. E.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Hu, T.

Huang, Y.

Hudson, D. D.

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Iizuka, R.

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

Inagawa, I.

J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
[Crossref]

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

Israelsen, N. M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jackson, S. D.

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jakobsen, M. H.

Jensen, M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jones, C. E.

A. R. Hilton, C. E. Jones, and M. Bran, “Non-oxide IVA — VA — VIA chalcogenide glasses .* Part i . Glass-forming regions and variations in physical properties,” Physics and Chemistry of Glass volume 7 (1966).

Koltashev, V. V.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Kubat, I.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kung, F. H.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

Lamrini, S.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Lewis, K. L.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Lezal, D.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics application,” Optoelectron.: Adv. Mater. Devices 6(1), 133–137 (2004).

Li, G.

Li, L.

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Lindsay, I.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

Liu, S.

Liu, Z.

Lizuka, R.

J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
[Crossref]

Lloyd, G. R.

Lopez, J. E. A.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Lotz, M. R.

Lucas, J.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

Luo, B.

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Macedo, P. B.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Maeda, M.

M. Maeda and N. Y.- Zoe, Chemical Sensor Technology3rd ed. (Elsevier, 1991), p. 185.

Maklad, M. S.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Mammadov, E.

E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
[Crossref]

Maria, M.

Markos, C.

Martyshkin, D. V.

Mason, P. D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Matsumoto, M.

McDaniel, S.

Mehdiyeva, S.

E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
[Crossref]

Messaddeq, Y.

Miklos, R.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

Mirov, S. B.

Mizaikoff, B.

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
[Crossref]

Mohr, R. K.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Møller, U.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Morimoto, S.

J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
[Crossref]

Moselund, P. M.

M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region,” Biomed. Opt. Express 9(4), 1762 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

Moynihan, C. T.

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

Nagasaka, K.

Nallala, J.

Napier, B.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

Nguyen, V. Q.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

Nielsen, S.

J. A. Savage and S. Nielsen, “Chalcogenide Glasses Transmitting in the Infrared Between 1 and 20 µm - A State of the Art Review,” Infrared Phys. 5(4), 195–204 (1965).
[Crossref]

Nishii, J.

J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
[Crossref]

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibres,” J. Mater. Sci. 24(12), 4293–4297 (1989).
[Crossref]

Ohishi, Y.

Orchard, D. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Ou, H.

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Y.-P. Tseng, P. Bouzy, C. Pedersen, N. Stone, and P. Tidemand-Lichtenberg, “Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications,” Biomed. Opt. Express 9(10), 4979–4987 (2018).
[Crossref]

Pedlikova, J.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics application,” Optoelectron.: Adv. Mater. Devices 6(1), 133–137 (2004).

Peng, X.

Petersen, C. R.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region,” Biomed. Opt. Express 9(4), 1762 (2018).
[Crossref]

M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Plotnichenko, V. G.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

Podoleanu, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Prtljaga, N.

Pureza, P. C.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

Pushkin, A. A.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Pyrkov, Y. N.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rao, K. J.

K. J. Rao, Chalcogenide Glasses in Structural Chemistry of Glasses (Elsevier, 2002), Chapter 13, 513–534.

Reyes, A.

E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
[Crossref]

Richardson, M. C.

Riggins, A.

Rochette, M.

Sanghera, J. S.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

Sanghera, S.

S. Sanghera, L. B. Shaw, and D. Aggarwal, “Applications of chalcogenide glass optical fibres,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Savage, J. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

J. A. Savage and S. Nielsen, “Chalcogenide Glasses Transmitting in the Infrared Between 1 and 20 µm - A State of the Art Review,” Infrared Phys. 5(4), 195–204 (1965).
[Crossref]

J. A. Savage, Infra-Red Optical Materials and Their Antireflecion Coatings” W. T. Welfored, ed. (Adam Hilger Ltd, n.d.).

Schepler, K. L.

Scholle, K.

Schülzgen, A.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Scripachev, I. V.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and E. M. Dianov, “Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,” Int. J. Optoelectron. 7, 237–254 (1992).

M. F. Churbanov, I. V. Scripachev, and V. G. Borisevich, “Effect of Hydrogen Impurity on Optical Properties of As–Se and As–S Glass Systems,”Cent. Natl. Telecommun. Lannion Fr. 152–55 in Extended Abstracts of the 8th International Symposium on Halide Glasses Perros-Guirec, France, September 22–24 (1992).

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid- infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

D. Furniss and A. B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics, in Principles and Applications of Thermal Analysis” P. Gabbott, ed. Blackwell Publ. LtdOxf. UK (2008).

Shah, L.

Shaposhnikov, R. M.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Shaw, L. B.

S. Sanghera, L. B. Shaw, and D. Aggarwal, “Applications of chalcogenide glass optical fibres,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

Shiryaev, V. S.

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid- infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

Sincore, A.

Sojka, L.

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Stone, N.

Su, J.

Suchkov, A. I.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Sujecki, S.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, and et al., “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, L.

Suzuki, T.

Taboryski, R.

Tan, F.

Tang, D.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Tang, Z.

Tao, G.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Taylor, P. C.

E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
[Crossref]

Tezuka, H.

Tidemand-Lichtenberg, P.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Y.-P. Tseng, P. Bouzy, C. Pedersen, N. Stone, and P. Tidemand-Lichtenberg, “Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications,” Biomed. Opt. Express 9(10), 4979–4987 (2018).
[Crossref]

Tikhomirov, V. K.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Travers, J. C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Trolès, J.

Tseng, Y.-P.

Tuan, T. H.

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge–Sb–Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Wang, X.

Wang, Y.

N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311–10319 (2019).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Ward, J.

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Xu, H.

Xue, X.

Yamagishi, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibres,” J. Mater. Sci. 24(12), 4293–4297 (1989).
[Crossref]

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

Yamashita, T.

J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
[Crossref]

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibres,” J. Mater. Sci. 24(12), 4293–4297 (1989).
[Crossref]

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Yang, P.

Yang, Z.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Yokota, R.

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Yuan, Y.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zavadil, J.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics application,” Optoelectron.: Adv. Mater. Devices 6(1), 133–137 (2004).

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Zhang, N.

Zhang, P.

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

Zhou, B.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zoe, N. Y.-

M. Maeda and N. Y.- Zoe, Chemical Sensor Technology3rd ed. (Elsevier, 1991), p. 185.

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Analyst (1)

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, O. Bang, and M. Farries, “Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease,” Analyst 143(24), 5874–5887 (2018).
[Crossref]

Annu. Rev. Anal. Chem. (1)

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
[Crossref]

Biomed. Opt. Express (2)

C. R. Chim. (1)

S. Sanghera, L. B. Shaw, and D. Aggarwal, “Applications of chalcogenide glass optical fibres,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Infrared Phys. (1)

J. A. Savage and S. Nielsen, “Chalcogenide Glasses Transmitting in the Infrared Between 1 and 20 µm - A State of the Art Review,” Infrared Phys. 5(4), 195–204 (1965).
[Crossref]

Infrared Phys. Technol. (2)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Inorg. Mater. (1)

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Int. J. Optoelectron. (1)

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and E. M. Dianov, “Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,” Int. J. Optoelectron. 7, 237–254 (1992).

J. Am. Ceram. Soc. (3)

F. M. Ernsberger, “Molecular Water in Glass,” J. Am. Ceram. Soc. 60(1-2), 91–92 (1977).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10 Se30Te30 glass fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[Crossref]

J. Mater. Sci. (1)

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibres,” J. Mater. Sci. 24(12), 4293–4297 (1989).
[Crossref]

J. Non-Cryst. Solids (5)

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[Crossref]

J. Nishii, S. Morimoto, I. Inagawa, R. Lizuka, and T. Yamashita, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199–208 (1992).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber: Mid-infrared supercontinuum covering 2 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Light: Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (2)

Optoelectron.: Adv. Mater. Devices (1)

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics application,” Optoelectron.: Adv. Mater. Devices 6(1), 133–137 (2004).

Rev. Mod. Phys. (1)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Sci. Rep. (1)

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Solid State Commun. (1)

E. Mammadov, D. Bobela, A. Reyes, S. Mehdiyeva, and P. C. Taylor, “Magnetic resonance study of arsenic bonding sites in ternary chalcogenide glasses,” Solid State Commun. 151(20), 1459–1462 (2011).
[Crossref]

Other (7)

M. Maeda and N. Y.- Zoe, Chemical Sensor Technology3rd ed. (Elsevier, 1991), p. 185.

K. J. Rao, Chalcogenide Glasses in Structural Chemistry of Glasses (Elsevier, 2002), Chapter 13, 513–534.

M. F. Churbanov, I. V. Scripachev, and V. G. Borisevich, “Effect of Hydrogen Impurity on Optical Properties of As–Se and As–S Glass Systems,”Cent. Natl. Telecommun. Lannion Fr. 152–55 in Extended Abstracts of the 8th International Symposium on Halide Glasses Perros-Guirec, France, September 22–24 (1992).

D. Furniss and A. B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics, in Principles and Applications of Thermal Analysis” P. Gabbott, ed. Blackwell Publ. LtdOxf. UK (2008).

A. R. Hilton, C. E. Jones, and M. Bran, “Non-oxide IVA — VA — VIA chalcogenide glasses .* Part i . Glass-forming regions and variations in physical properties,” Physics and Chemistry of Glass volume 7 (1966).

J. A. Savage, Infra-Red Optical Materials and Their Antireflecion Coatings” W. T. Welfored, ed. (Adam Hilger Ltd, n.d.).

Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Distillation set up schematic for partially open or open distillations with flow directions and sealing points indicated: (a) using a two-zone furnace and (b) using a clam shell furnace.
Fig. 2.
Fig. 2. (a) Schematic diagram of the rod-in-tube method of small core SIF fabrication, (b) extrusion components (c) cane drawing setup (d) aluminium holder for rod-in-tube method (e) fiber drawing set up; (f) SEM cross-section images of fabricated $\sim $ 6µm core diameter SIF and (g) $\sim $ 4µm core diameter SIF.
Fig. 3.
Fig. 3. (a) FTIR measurement of 2.5mm optical path length samples of: partially purified core glass (black), partially purified cladding glass (red), and distilled core glass (blue). Main impurity bands are indicated. (b) Unstructured fiber loss of partially purified (orange) of fiber length 2.081 m, and distilled core glass with 350 ppmw Al oxide getter and 900 ppmw TeCl4 hydride getter (green) of fiber length 4.580 m. The red shaded area illustrates the pump wavelength. Refer to Table 1 for extinction coefficients and impurity concentrations.
Fig. 4.
Fig. 4. (a) Refractive index dispersion measurement from 1.5 to 30µm wavelength for the core glass (blue) and cladding glass (red), and the corresponding numerical aperture of the optical fiber (purple dashed). (b) Material dispersion of the core (black) and cladding (red) glasses indicating a material ZDW at 6.98 µm and 9.79 µm, respectively.
Fig. 5.
Fig. 5. (a) Calculated dispersion and ZDWs for the fundamental mode of SIFs with varying core diameter (for a circular core structure), modelled using COMSOL 5.2. (b) Calculated birefringence (dashed) and slow/fast axis dispersion (solids) of the 4 µm core diameter elliptical fiber based on actual imported SEM image in Fig. 2(g).
Fig. 6.
Fig. 6. (a) SC spectra obtained from fibers with around 4 µm, 6 µm, and 10 µm core diameters of lengths 155mm, 161mm, and 180mm, respectively. (b) Comparison between experiment and simulation output spectra for the 4 µm core fiber assuming 1.5kW coupled peak power. (c) Measured spectral evolution with increasing pump power coupled to the 4 µm core diameter fiber. The dashed lines show the position of the ZDWs of the slow axis polarization.
Fig. 7.
Fig. 7. Measured output spectra as a function of fiber rotation at reduced pump power of ∼20mW to avoid damage from beam offset. The dashed line show the trend in the long-wavelength edge of the spectra.

Tables (1)

Tables Icon

Table 1. Absorption bands, estimated concentration of impurity absorptions and loss contribution for the Ge16As24Se15.5Te44.5 (at.%) glass system (see Fig. 3(b)). (i) precursors partially purified (i.e. only As and Se elemental precursors were purified by heat treatment); (ii) partially open vacuum distillation with 350 ppmw Al oxide getter and 900 ppmw TeCl4 hydride getter.

Metrics