Abstract

The additive patterning of apatite with good biocompatibility and osteoconductivity is a useful technique for the production and surface functionalization of biomaterials. We developed this technique through our laser-induced forward transfer (LIFT) process using a laser-absorbing sacrificial layer in combination with a shock-absorbing polydimethylsiloxane (PDMS) receiver. With the PDMS shock-absorbing function, even the brittle apatite and that immobilizing the cell adhesion protein fibronectin (Fn-apatite) were successfully transferred and micropatterned while maintaining their dense, filmy state. The laser pulse energy effect was investigated, leading to the optimum energy range just above the transfer threshold. The apatite and Fn-apatite micropatterns exhibited superior cytocompatibility compared to the PDMS surface, and could potentially be used for cellular micromanipulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Printing of metallic 3D micro-objects by laser induced forward transfer

Michael Zenou and Zvi Kotler
Opt. Express 24(2) 1431-1446 (2016)

Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement

Yong Da Sie, Yi-Cheng Li, Nan-Shan Chang, Paul J. Campagnola, and Shean-Jen Chen
Biomed. Opt. Express 6(2) 480-490 (2015)

Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films

Sudipta Bera, A. J. Sabbah, J. M. Yarbrough, C. G. Allen, Beau Winters, Charles G. Durfee, and Jeff A. Squier
Appl. Opt. 46(21) 4650-4659 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Levene, R. D. Scott, and B. W. Siryj, “Material transfer recording,” Appl. Opt. 9(10), 2260–2265 (1970).
    [Crossref]
  2. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
    [Crossref]
  3. I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
    [Crossref]
  4. Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69(7), S275–S278 (1999).
    [Crossref]
  5. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
    [Crossref]
  6. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. A. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A 106(3), 479–487 (2012).
    [Crossref]
  7. C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
    [Crossref]
  8. A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
    [Crossref]
  9. A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
    [Crossref]
  10. E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
    [Crossref]
  11. K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
    [Crossref]
  12. A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand patterning of indium tin oxide microdots by laser-induced dot transfer,” Appl. Phys. Express 6(9), 092601 (2013).
    [Crossref]
  13. A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
    [Crossref]
  14. J. Ihlemann and R. Weichenhain-Schriever, “Patterned deposition of thin SiOX-films by laser induced forward transfer,” Thin Solid Films 550, 521–524 (2014).
    [Crossref]
  15. M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
    [Crossref]
  16. N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
    [Crossref]
  17. I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
    [Crossref]
  18. Y. Tuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253(20), 8422–8427 (2007).
    [Crossref]
  19. A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
    [Crossref]
  20. H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
    [Crossref]
  21. J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
    [Crossref]
  22. E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
    [Crossref]
  23. Edsger C. P. Smits, Arnaud Walter, Dafo M. de Leeuw, and Kamal Asadi, “Laser induced forward transfer of graphene,” Appl. Phys. Lett. 111(17), 173101 (2017).
    [Crossref]
  24. F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
    [Crossref]
  25. O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater. 21(11), 1017–1024 (2005).
    [Crossref]
  26. J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
    [Crossref]
  27. A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
    [Crossref]
  28. A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
    [Crossref]
  29. A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
    [Crossref]
  30. M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
    [Crossref]
  31. H. Murata, “Rheology-Theory and application to biomaterials,” Polymerization, IntechOpen, http://dx.doi.org/10.5772/48393 (2012).
    [Crossref]
  32. Y. Nishiyama, “Dynamic Mechanical Analysis for Solid Polymer Evaluation,” J. Network Polym., Jpn. 32, 362–366 (2011).
    [Crossref]
  33. F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
    [Crossref]
  34. X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
    [Crossref]
  35. T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
    [Crossref]
  36. K. Kilpadi, P. Chang, and S. Bellis, “Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel,” J. Biomed. Mater. Res. 57, 258–267 (2001).
    [Crossref]

2018 (1)

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

2017 (1)

Edsger C. P. Smits, Arnaud Walter, Dafo M. de Leeuw, and Kamal Asadi, “Laser induced forward transfer of graphene,” Appl. Phys. Lett. 111(17), 173101 (2017).
[Crossref]

2015 (3)

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

2014 (4)

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

J. Ihlemann and R. Weichenhain-Schriever, “Patterned deposition of thin SiOX-films by laser induced forward transfer,” Thin Solid Films 550, 521–524 (2014).
[Crossref]

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
[Crossref]

2013 (1)

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand patterning of indium tin oxide microdots by laser-induced dot transfer,” Appl. Phys. Express 6(9), 092601 (2013).
[Crossref]

2012 (3)

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. A. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A 106(3), 479–487 (2012).
[Crossref]

A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
[Crossref]

A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
[Crossref]

2011 (3)

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Y. Nishiyama, “Dynamic Mechanical Analysis for Solid Polymer Evaluation,” J. Network Polym., Jpn. 32, 362–366 (2011).
[Crossref]

2010 (3)

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
[Crossref]

2009 (2)

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
[Crossref]

2008 (2)

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[Crossref]

2007 (1)

Y. Tuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253(20), 8422–8427 (2007).
[Crossref]

2005 (3)

O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater. 21(11), 1017–1024 (2005).
[Crossref]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

2004 (1)

M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
[Crossref]

2003 (1)

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

2001 (1)

K. Kilpadi, P. Chang, and S. Bellis, “Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel,” J. Biomed. Mater. Res. 57, 258–267 (2001).
[Crossref]

1999 (1)

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69(7), S275–S278 (1999).
[Crossref]

1998 (1)

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

1997 (1)

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

1970 (1)

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Alloncle, A.-P.

Arias, J. L.

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

Arnold, C. B.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Asadi, Kamal

Edsger C. P. Smits, Arnaud Walter, Dafo M. de Leeuw, and Kamal Asadi, “Laser induced forward transfer of graphene,” Appl. Phys. Lett. 111(17), 173101 (2017).
[Crossref]

Auyeung, R. C. Y.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
[Crossref]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
[Crossref]

Axente, E.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Banks, D. P.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Bauer, F.

Bellis, S.

K. Kilpadi, P. Chang, and S. Bellis, “Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel,” J. Biomed. Mater. Res. 57, 258–267 (2001).
[Crossref]

Bernhard, S.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Biver, E.

Blinda, O.

O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater. 21(11), 1017–1024 (2005).
[Crossref]

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Cacciotti, I.

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

Chang, P.

K. Kilpadi, P. Chang, and S. Bellis, “Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel,” J. Biomed. Mater. Res. 57, 258–267 (2001).
[Crossref]

Charipar, N. A.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
[Crossref]

Chen, S.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

Chichkov, B.

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Chichkov, B. N. A.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. A. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A 106(3), 479–487 (2012).
[Crossref]

Daileya, B.

O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater. 21(11), 1017–1024 (2005).
[Crossref]

de Leeuw, Dafo M.

Edsger C. P. Smits, Arnaud Walter, Dafo M. de Leeuw, and Kamal Asadi, “Laser induced forward transfer of graphene,” Appl. Phys. Lett. 111(17), 173101 (2017).
[Crossref]

Delaporte, P.

Eason, R. W.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Fan, D.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Fardel, R.

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

Feinaeugle, M.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Feurer, P.

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

Fosca, M.

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

Fotakis, C.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

Furuhata, Y.

Y. Tuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253(20), 8422–8427 (2007).
[Crossref]

Furuzono, T.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

García-sanz, F. J.

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

Grosu, V.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

Haberli, M.

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

Huis in ’t Veld, B.

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Huston, A. L.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
[Crossref]

Ihlemann, J.

J. Ihlemann and R. Weichenhain-Schriever, “Patterned deposition of thin SiOX-films by laser induced forward transfer,” Thin Solid Films 550, 521–524 (2014).
[Crossref]

Ito, A.

A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
[Crossref]

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
[Crossref]

Jordan, L.

O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater. 21(11), 1017–1024 (2005).
[Crossref]

Kafetzopoulos, D.

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

Kapsetaki, M.

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

Karaiskou, A.

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

Kattamis, N. T.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Kaur, K. S.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Kawaguchi, K.

A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
[Crossref]

Kawaguchi, Y.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[Crossref]

Kiedrowski, T.

Kilpadi, K.

K. Kilpadi, P. Chang, and S. Bellis, “Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel,” J. Biomed. Mater. Res. 57, 258–267 (2001).
[Crossref]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Kim, H.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
[Crossref]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
[Crossref]

Kim, H. M.

M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
[Crossref]

Kishida, A.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Kitamura, N.

Y. Tuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253(20), 8422–8427 (2007).
[Crossref]

Kleinb, L. H.

O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater. 21(11), 1017–1024 (2005).
[Crossref]

Koch, J.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. A. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A 106(3), 479–487 (2012).
[Crossref]

Koch, L.

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Koivusalo, L.

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Kokubo, T.

M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
[Crossref]

Korematsu, A.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Koshizaki, N.

A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
[Crossref]

Kowashi, Y.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Kurosaki, R.

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand patterning of indium tin oxide microdots by laser-induced dot transfer,” Appl. Phys. Express 6(9), 092601 (2013).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. A. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A 106(3), 479–487 (2012).
[Crossref]

Latini, A.

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

Laureti, S.

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

Lee, S. H.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
[Crossref]

Lei, Z.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Leon, B.

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

Levene, M. L.

Lippert, T.

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

Lohse, D.

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Loukakos, P. A.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Magoulakis, E.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Mailis, S.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

Mayor, M. B.

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

McDaniel, N. D.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Michalowski, A.

Miettinen, S.

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Miyazaki, K.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Murata, H.

H. Murata, “Rheology-Theory and application to biomaterials,” Polymerization, IntechOpen, http://dx.doi.org/10.5772/48393 (2012).
[Crossref]

Murayama, M.

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

Nagel, M.

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

Nakata, Y.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69(7), S275–S278 (1999).
[Crossref]

Narazaki, A.

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand patterning of indium tin oxide microdots by laser-induced dot transfer,” Appl. Phys. Express 6(9), 092601 (2013).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[Crossref]

Niino, H.

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand patterning of indium tin oxide microdots by laser-induced dot transfer,” Appl. Phys. Express 6(9), 092601 (2013).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[Crossref]

Nishiyama, Y.

Y. Nishiyama, “Dynamic Mechanical Analysis for Solid Polymer Evaluation,” J. Network Polym., Jpn. 32, 362–366 (2011).
[Crossref]

Nolte, S.

Nuesch, F. A.

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

Ohura, K.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Oido-Mori, M.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Okada, T.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69(7), S275–S278 (1999).
[Crossref]

Ou, J. Y.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Oyane, A.

A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
[Crossref]

A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
[Crossref]

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
[Crossref]

Papadopoulou, E. L.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Papazglou, D. G.

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

Pérez-amor, M.

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

Pietrantonio, F. D.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Piqué, A.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
[Crossref]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
[Crossref]

Pohl, R.

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Pou, J.

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

Rapp, L.

Rau, J. V.

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

Reiwick, A.

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Römer, G. R. B. E.

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Sakamaki, I.

A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
[Crossref]

Sato, T.

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand patterning of indium tin oxide microdots by laser-induced dot transfer,” Appl. Phys. Express 6(9), 092601 (2013).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[Crossref]

Scott, R. D.

Serra, P.

Shi, X.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Shimizu, Y.

A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
[Crossref]

Siryj, B. W.

Skottman, H.

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Smits, Edsger C. P.

Edsger C. P. Smits, Arnaud Walter, Dafo M. de Leeuw, and Kamal Asadi, “Laser induced forward transfer of graphene,” Appl. Phys. Lett. 111(17), 173101 (2017).
[Crossref]

Sogo, Y.

A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
[Crossref]

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

Sones, C. L.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Sorkio, A.

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Sun, C.

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Tanaka, J.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Tsurushima, H.

A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
[Crossref]

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

Tuboi, Y.

Y. Tuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253(20), 8422–8427 (2007).
[Crossref]

Uchida, M.

M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
[Crossref]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. A. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A 106(3), 479–487 (2012).
[Crossref]

Vainos, N. A.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

Varvaro, G.

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

Verona, E.

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Visser, C. W.

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Walter, Arnaud

Edsger C. P. Smits, Arnaud Walter, Dafo M. de Leeuw, and Kamal Asadi, “Laser induced forward transfer of graphene,” Appl. Phys. Lett. 111(17), 173101 (2017).
[Crossref]

Wang, J.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
[Crossref]

Wang, P.-L.

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

Wang, S.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Wang, X. P.

A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
[Crossref]

Wang, Y.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Weichenhain-Schriever, R.

J. Ihlemann and R. Weichenhain-Schriever, “Patterned deposition of thin SiOX-films by laser induced forward transfer,” Thin Solid Films 550, 521–524 (2014).
[Crossref]

Willis, D. A.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

Wokaun, A.

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

Yamazaki, A.

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

Yang, Z.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Zergioti, I.

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

Zhang, Y.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Zhou, X.

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Acta Biomater. (1)

A. Oyane, X. P. Wang, Y. Sogo, A. Ito, and H. Tsurushima, “Calcium phosphate composite layers for surface-mediated gene transfer,” Acta Biomater. 8(6), 2034–2046 (2012).
[Crossref]

Adv. Mater. (3)

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22, 4462–4466 (2010).
[Crossref]

M. Uchida, A. Oyane, H. M. Kim, T. Kokubo, and A. Ito, “Biomimetic coating of laminin–apatite composite on titanium metal with excellent cell adhesive property,” Adv. Mater. 16, 1071–1074 (2004).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. R. B. E. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (4)

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69(7), S275–S278 (1999).
[Crossref]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. A. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A 106(3), 479–487 (2012).
[Crossref]

M. Nagel, R. Fardel, P. Feurer, M. Haberli, F. A. Nuesch, T. Lippert, and A. Wokaun, “Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior,” Appl. Phys. A 92(4), 781–789 (2008).
[Crossref]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser-forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys. A 96(2), 441–445 (2009).
[Crossref]

Appl. Phys. Express (2)

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand patterning of indium tin oxide microdots by laser-induced dot transfer,” Appl. Phys. Express 6(9), 092601 (2013).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[Crossref]

Appl. Phys. Lett. (3)

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

I. Zergioti, A. Karaiskou, D. G. Papazglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[Crossref]

Edsger C. P. Smits, Arnaud Walter, Dafo M. de Leeuw, and Kamal Asadi, “Laser induced forward transfer of graphene,” Appl. Phys. Lett. 111(17), 173101 (2017).
[Crossref]

Appl. Surf. Sci. (5)

Y. Tuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253(20), 8422–8427 (2007).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601–605 (1998).
[Crossref]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation by laser-induced dot transfer,” Appl. Surf. Sci. 255(24), 9703–9706 (2009).
[Crossref]

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

K. S. Kaur, M. Feinaeugle, D. P. Banks, J. Y. Ou, F. D. Pietrantonio, E. Verona, C. L. Sones, and R. W. Eason, “Laser-induced forward transfer of focussed ion beam pre-machined donors,” Appl. Surf. Sci. 257(15), 6650–6653 (2011).
[Crossref]

Biomaterials (1)

A. Sorkio, L. Koch, L. Koivusalo, A. Reiwick, S. Miettinen, B. Chichkov, and H. Skottman, “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials 171, 57–71 (2018).
[Crossref]

Dent. Mater. (1)

O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater. 21(11), 1017–1024 (2005).
[Crossref]

J. Appl. Phys. (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

J. Biomed. Mater. Res. (2)

T. Furuzono, P.-L. Wang, A. Korematsu, K. Miyazaki, M. Oido-Mori, Y. Kowashi, K. Ohura, J. Tanaka, and A. Kishida, “Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material,” J. Biomed. Mater. Res. 65B(2), 217–226 (2003).
[Crossref]

K. Kilpadi, P. Chang, and S. Bellis, “Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel,” J. Biomed. Mater. Res. 57, 258–267 (2001).
[Crossref]

J. Biomed. Mater. Res., Part A (2)

A. Oyane, M. Murayama, A. Yamazaki, Y. Sogo, A. Ito, and H. Tsurushima, “Fibronectin–DNA–apatite composite layer for highly efficient and area-specific gene transfer,” J. Biomed. Mater. Res., Part A 92A(3), 1038–1047 (2010).
[Crossref]

A. Oyane, I. Sakamaki, Y. Shimizu, K. Kawaguchi, and N. Koshizaki, “Liquid-phase laser process for simple and area-specific calcium phosphate coating,” J. Biomed. Mater. Res., Part A 100A(10), 2573–2580 (2012).
[Crossref]

J. Biomed. Mater. Res., Part B (1)

J. V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, and A. Latini, “Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition,” J. Biomed. Mater. Res., Part B 103, 1621–1631 (2015).
[Crossref]

J. Laser Micro/Nanoeng. (1)

A. Narazaki, R. Kurosaki, T. Sato, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

J. Mater. Sci.: Mater. Med. (1)

F. J. García-sanz, M. B. Mayor, J. L. Arias, J. Pou, B. Leon, and M. Pérez-amor, “Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques,” J. Mater. Sci.: Mater. Med. 8(12), 861–865 (1997).
[Crossref]

J. Network Polym., Jpn. (1)

Y. Nishiyama, “Dynamic Mechanical Analysis for Solid Polymer Evaluation,” J. Network Polym., Jpn. 32, 362–366 (2011).
[Crossref]

Opt. Express (2)

Org. Electron. (1)

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

PLoS One (1)

X. Shi, S. Wang, Y. Zhang, Y. Wang, Z. Yang, X. Zhou, Z. Lei, and D. Fan, “Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-Actin,” PLoS One 9(11), e111503 (2014).
[Crossref]

Thin Solid Films (1)

J. Ihlemann and R. Weichenhain-Schriever, “Patterned deposition of thin SiOX-films by laser induced forward transfer,” Thin Solid Films 550, 521–524 (2014).
[Crossref]

Other (1)

H. Murata, “Rheology-Theory and application to biomaterials,” Polymerization, IntechOpen, http://dx.doi.org/10.5772/48393 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Process flowchart for the preparation of the apatite and fibronectin (Fn)-immobilized apatite (Fn-apatite) donor films on a carbon sacrificial layer-coated PET support (C/PET) by a precursor-assisted biomimetic process. The Fn proteins are immobilized within the apatite donor film by supplementing the CaCl2, K2HPO4·3H2O, and supersaturated calcium phosphate solutions with Fn.
Fig. 2.
Fig. 2. Schematic of the LIFT system for the apatite micropattern fabrication. Each nanosecond (ns) laser pulse is absorbed at a carbon sacrificial layer between a transparent PET support and an apatite donor film, resulting in the transfer of the apatite donor to a receiver with a micropattern corresponding to the laser spot.
Fig. 3.
Fig. 3. SEM images from the (a) top- and (b) 30°-view observation for the apatite/C/PET donor sample. (c) Top-view SEM image and (d) thin-film XRD pattern for the Fn-apatite/C/PET donor sample.
Fig. 4.
Fig. 4. Confocal laser scanning microscopy images of the apatite microchips transferred by the LIFT onto the (a) PDMS and (b) PET receivers. (c) Model diagram of the impact force generated on the PDMS (left) and PET (right) receivers during the film transfer. The impact force can be dispersed and absorbed by the PDMS receiver, while the impact does not dissipate much as heat, and is stored near the PET surface, resulting in a film fracture.
Fig. 5.
Fig. 5. Laser pulse energy dependence of the morphology and size of the Fn-apatite micropatterns. (a) Confocal laser scanning microscopy images of the laser-irradiated spots on the C/PET (left) and Fn-apatite/C/PET (center) samples and the corresponding Fn-apatite micropatterns formed on the PDMS receiver (right). (b) Variation of the average diameter with the laser pulse energy of the laser-irradiated spots on the C/PET (black triangles) and Fn-apatite/C/PET (red open circles) samples and of the corresponding transferred Fn-apatite microchips (blue circles).
Fig. 6.
Fig. 6. Optical microscopic images of the CHO-K1 cells (dark purple spots with 10 to several tens of micrometers in size) cultured on the (a) apatite/C/PET and (b) Fn-apatite/C/PET donor samples and the corresponding (c) apatite and (d) Fn-apatite micropatterns on PDMS prepared by the LIFT. The CHO-K1 cells are fixed and stained by crystal violet for 24 h (c, d) or 27 h (a, b) after seeding. In (c) and (d), cells were observed more densely on the micropatterns, suggesting a higher cytocompatibility of the transferred apatite and Fn-apatite compared to PDMS.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η a b s E p = E a b l + E v + E r e s . h e a t ,
η s , a b s E p = E s , c h a n g e + E v + E r e s . h e a t + E d , t r a n s f e r .

Metrics