H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).
N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]
A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]
A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]
G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]
A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]
A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]
J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]
S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
[Crossref]
Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]
B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]
C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]
B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]
A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]
T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]
A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]
H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]
F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]
N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]
H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]
S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]
A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]
A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]
A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]
B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]
K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]
C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan, and Y. Liu, “Magnetically controllable wavelength-division-multiplexing fiber coupler,” Opt. Express 23(9), 11123 (2015).
[Crossref]
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]
K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]
Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]
Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]
B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]
G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]
G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]
A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]
G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]
B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]
F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]
Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]
Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]
H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).
A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]
A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]
B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]
Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]
Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]
Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]
Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]
A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]
B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]
T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]
Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]
Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]
A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]
B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]
C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]
Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]
Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]
Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]
K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]
G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]
G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]
Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
[Crossref]
J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]
S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]
Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]
B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]
J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]
Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]
F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]
F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]
B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]
A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]
K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]
K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]
K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]
Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]
S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]
Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]
Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]
T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]
D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]