Abstract

In this study, we present a facile method to enhance the transmittance of soda lime glasses through hydrothermal processing. By adjusting the treated parameters, we obtain two types of glass with enhanced transmission: one frosted glass and one clear glass. Our results show that after surface modification with ammonium hydroxide solution, the transmittance of the frosted glass reach more than 95%. Scanning electron microscopy studies reveal that the treated surface is covered with irregular micro-craters. On the other hand, the treated clear glass is covered with extensive nanoflakes structure. We achieve a maximum of 5.4% transmittance enhancement for the clear glass over a wide wavelength range, to 96.7% for normal incidence.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optical path clearing and enhanced transmission through colloidal suspensions

J. Baumgartl, T. Čižmár, M. Mazilu, V. C. Chan, A. E. Carruthers, B. A. Capron, W. McNeely, E. M. Wright, and K. Dholakia
Opt. Express 18(16) 17130-17140 (2010)

Determination of the correlation between physical measurements of roughness, optical properties, and perception of frosted glass surfaces

Jérôme Frayret, Olivier Eterradossi, Alain Castetbon, Martine Potin-Gautier, Gérard Trouvé, and Hugues de Roulhac
Appl. Opt. 47(21) 3932-3940 (2008)

Enhanced transmission through rough-metal surfaces

Zu-Han Gu, Richard S. Dummer, Alexei A. Maradudin, Arthur R. McGurn, and E. R. Mendez
Appl. Opt. 30(28) 4094-4102 (1991)

References

  • View by:
  • |
  • |
  • |

  1. X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).
  2. S. J. Wilson and M. C. Hutley, “The optical properties of'moth eye’ antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
    [Crossref]
  3. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
    [Crossref]
  4. M. L. Brongersma, Y. Cui, and S. H. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref]
  5. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [Crossref]
  6. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
    [Crossref]
  7. J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
    [Crossref]
  8. B. Lam and C. Guo, “Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer,” Light: Sci. Appl. 7(1), 30 (2018).
    [Crossref]
  9. J. G. Cai and L. M. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
    [Crossref]
  10. X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
    [Crossref]
  11. C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33(19), 2224–2226 (2008).
    [Crossref]
  12. T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
    [Crossref]
  13. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
    [Crossref]
  14. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [Crossref]
  15. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [Crossref]
  16. C. T. Wu, F. H. Ko, and C. H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure,” Appl. Phys. Lett. 90(17), 171911 (2007).
    [Crossref]
  17. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
    [Crossref]
  18. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [Crossref]
  19. J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71(3), 1388–1393 (1992).
    [Crossref]
  20. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
    [Crossref]
  21. T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
    [Crossref]
  22. B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
    [Crossref]
  23. J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
    [Crossref]
  24. X. Liu and J. He, “One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces,” Langmuir 25(19), 11822–11826 (2009).
    [Crossref]
  25. J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
    [Crossref]
  26. S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
    [Crossref]

2018 (2)

B. Lam and C. Guo, “Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer,” Light: Sci. Appl. 7(1), 30 (2018).
[Crossref]

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

2015 (3)

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

J. G. Cai and L. M. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

2014 (1)

M. L. Brongersma, Y. Cui, and S. H. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

2013 (1)

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

2012 (1)

B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
[Crossref]

2011 (3)

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[Crossref]

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

2010 (2)

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref]

2009 (3)

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

X. Liu and J. He, “One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces,” Langmuir 25(19), 11822–11826 (2009).
[Crossref]

2008 (3)

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33(19), 2224–2226 (2008).
[Crossref]

T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

2007 (1)

C. T. Wu, F. H. Ko, and C. H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure,” Appl. Phys. Lett. 90(17), 171911 (2007).
[Crossref]

2001 (1)

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
[Crossref]

2000 (1)

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

1999 (1)

1998 (1)

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

1992 (1)

J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71(3), 1388–1393 (1992).
[Crossref]

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical properties of'moth eye’ antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Abbot, S.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Allsopp, D. W. E.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Birner, A.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. H. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

Brunner, R.

T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

Burkhard, G. F.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Cai, J. G.

J. G. Cai and L. M. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Chang, H. C.

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

Chen, Q.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Cheng, C. W.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[Crossref]

Chhajed, S.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Cho, J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Clayton, F.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Connor, S. T.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Crawford, M. H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. H. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

DeNatale, J. F.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71(3), 1388–1393 (1992).
[Crossref]

Devre, M. W.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref]

Fan, S. H.

M. L. Brongersma, Y. Cui, and S. H. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Fischer, A. J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Flintoff, J. F.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71(3), 1388–1393 (1992).
[Crossref]

Geng, F.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

Gosele, U.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Guo, C.

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

B. Lam and C. Guo, “Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer,” Light: Sci. Appl. 7(1), 30 (2018).
[Crossref]

Hane, K.

Harker, A. B.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71(3), 1388–1393 (1992).
[Crossref]

Hays, D.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

He, J.

X. Liu and J. He, “One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces,” Langmuir 25(19), 11822–11826 (2009).
[Crossref]

He, J. H.

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

Helgert, M.

T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

Ho, B. J.

Hood, P. J.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71(3), 1388–1393 (1992).
[Crossref]

Hsu, C. M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref]

Huang, J.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

Hubbard, G.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of'moth eye’ antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref]

Jiang, B.

B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
[Crossref]

C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33(19), 2224–2226 (2008).
[Crossref]

Jiang, P.

Jiang, X.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

Jiang, X. D.

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

Johnson, D.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Jung, G. Y.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Kanamori, Y.

Kikuta, H.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
[Crossref]

Kim, H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Kim, J. K.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Kim, S. T.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Ko, F. H.

C. T. Wu, F. H. Ko, and C. H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure,” Appl. Phys. Lett. 90(17), 171911 (2007).
[Crossref]

Lam, B.

B. Lam and C. Guo, “Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer,” Light: Sci. Appl. 7(1), 30 (2018).
[Crossref]

Lee, H.-M.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Lee, J. W.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Lee, Y. T.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref]

Leem, Y. C.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Li, A. P.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Li, H. Y.

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

Li, Z. H.

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

Lien, W. C.

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

Lim, W.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Lin, C. A.

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

Lin, C. H.

C. T. Wu, F. H. Ko, and C. H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure,” Appl. Phys. Lett. 90(17), 171911 (2007).
[Crossref]

Liu, C.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Liu, X.

X. Liu and J. He, “One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces,” Langmuir 25(19), 11822–11826 (2009).
[Crossref]

Lohmuller, T.

T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

Lv, H. B.

B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
[Crossref]

McGehee, M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Muller, F.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Nielsch, K.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Okano, M.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
[Crossref]

Park, S. J.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Park, Y.-S.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Pearton, S. J.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Qi, L. M.

J. G. Cai and L. M. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Reelfs, B. H.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Sasaki, M.

Sasserath, J. N.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Schubert, E. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Schubert, M. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Shields, P. A.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Singh, S. C.

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

Sone, C.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Song, J. H.

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref]

Spatz, J. P.

T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

Sun, C.-H.

Sun, L.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

Sundermann, M.

T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

Takahara, K.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
[Crossref]

Toyota, H.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
[Crossref]

Tsai, S.

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

Wang, Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Wang, W. N.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Wang, Y. L.

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of'moth eye’ antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Wu, C. T.

C. T. Wu, F. H. Ko, and C. H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure,” Appl. Phys. Lett. 90(17), 171911 (2007).
[Crossref]

Wu, P. H.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[Crossref]

Wu, T. M.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[Crossref]

Wu, W.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

Wu, W. D.

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

Xia, B. B.

B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
[Crossref]

Xiao, B.

B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
[Crossref]

Xu, Y. Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Yang, D. Q.

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

Yang, S. Y.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[Crossref]

Yao, C. N.

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

Yao, T. F.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[Crossref]

Ye, X.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

Yotsuya, T.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
[Crossref]

Yu, J. S.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref]

Yu, W. L.

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

Yu, Z.

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref]

Yu, Z. F.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Zhan, Z.

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

Zhang, J. C.

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

Zhang, J. F.

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

Zhang, X. X.

B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
[Crossref]

Zheng, J. C.

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

Zheng, W. G.

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

Zhou, W.

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Zhu, Y.

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

Zu, X.

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

ACS Nano (1)

S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[Crossref]

Adv. Mater. (1)

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[Crossref]

Appl. Phys. Lett. (2)

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbot, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

C. T. Wu, F. H. Ko, and C. H. Lin, “Self-organized tantalum oxide nanopyramidal arrays for antireflective structure,” Appl. Phys. Lett. 90(17), 171911 (2007).
[Crossref]

J. Appl. Phys. (2)

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

J. F. DeNatale, P. J. Hood, J. F. Flintoff, and A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71(3), 1388–1393 (1992).
[Crossref]

J. Korean Phys. Soc. (1)

J. H. Song, Y. C. Leem, Y.-S. Park, H.-M. Lee, W. Lim, S. T. Kim, G. Y. Jung, and S. J. Park, “Light extraction efficiency of GaN-based LEDs with non-periodic and periodic sub-wavelength structures,” J. Korean Phys. Soc. 62(5), 770–774 (2013).
[Crossref]

J. Optoelectron Adv. M. (1)

X. Ye, J. Huang, J. C. Zhang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Subwavelength porous silica antireflection coating,” J. Optoelectron Adv. M. 13(5), 532–536 (2011).

J. Sol-Gel Sci. Technol. (1)

B. Xiao, B. B. Xia, H. B. Lv, X. X. Zhang, and B. Jiang, “Sol–gel preparation of double-layer tri-wavelength antireflective coating,” J. Sol-Gel Sci. Technol. 64(2), 276–281 (2012).
[Crossref]

J. Vac. Sci. Technol., A (1)

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol., A 18(4), 1220–1224 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2), L747–L749 (2001).
[Crossref]

Langmuir (1)

X. Liu and J. He, “One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces,” Langmuir 25(19), 11822–11826 (2009).
[Crossref]

Light: Sci. Appl. (1)

B. Lam and C. Guo, “Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer,” Light: Sci. Appl. 7(1), 30 (2018).
[Crossref]

Mater. Express (1)

J. F. Zhang, Y. Zhu, Z. H. Li, W. Zhou, J. C. Zheng, and D. Q. Yang, “Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method,” Mater. Express 5(4), 280–290 (2015).
[Crossref]

Mater. Horiz. (1)

J. G. Cai and L. M. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Microelectron. Eng. (1)

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[Crossref]

Nano Energy (1)

S. C. Singh, H. Y. Li, C. N. Yao, Z. Zhan, W. L. Yu, Z. Yu, and C. Guo, “Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes,” Nano Energy 51, 774–785 (2018).
[Crossref]

Nano Lett. (3)

T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref]

Nat. Mater. (1)

M. L. Brongersma, Y. Cui, and S. H. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref]

Opt. Acta (1)

S. J. Wilson and M. C. Hutley, “The optical properties of'moth eye’ antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Opt. Lett. (2)

Sci. Rep. (1)

X. Ye, X. Jiang, J. Huang, F. Geng, L. Sun, X. Zu, and W. Wu, “Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching,” Sci. Rep. 5(1), 13023 (2015).
[Crossref]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Two detection approaches of the transmittance used in our experiment. (b) The different transmission and reflection situation of different glass (NG, CG, FG). The yellow arrows represent the coming light and the light pass through the glass. The green arrows represent the reflected or scattered light. The size of the sun or the thickness of the arrows represents the strength of the light.
Fig. 2.
Fig. 2. The optical properties of the CG. Transmittance of the soda lime glass before and after treated at 100 $^\circ{\textrm{C}}$ (a) without the integrating sphere. (b) with the integrating sphere. (c) a photograph of the NG and prepared CG (Baked at 100$\;\ ^\circ{\textrm{C}}$ for 24 h) under the incandescent lamp. A strong surface reflection on the NG is showed obviously. (d) A comparison between the NG and treated CG. The logos look much clear through the treated CG. The black rectangle in (c) and (d) represent the NG. The red rectangle in (c) and (d) represent the CG. (e) The reflectance of the soda lime glass before and after treated at 100 $^\circ{\textrm{C}}$ measured with the integrating sphere.
Fig. 3.
Fig. 3. The top-view SEM images of CG prepared at 100 $^\circ{\textrm{C}}$ with different treating time: (a) bare glass; (b) 4 h; (c) 8 h; (d) 24 h.
Fig. 4.
Fig. 4. SEM images of glass substrate prepared at 100 $^\circ{\textrm{C}}$ for 12 h (a). (b) The enlarged images of selected areas of (a). Panels (c) and (d) show selected areas of (b) registered at a higher magnification. (c) Part1 in (b), (d) Part 2 in (b). EDX spectra of the glass substrate prepared at 100 $^\circ{\textrm{C}}$ for 12 h (e) and without treatment (f)
Fig. 5.
Fig. 5. The optical properties of the FG. Transmittance of the soda lime glass before and after treated at 160 $^\circ{\textrm{C}}$ (a) without using the integrating sphere, (b) using the integrating sphere. (c) A photograph of the NG and prepared FG (Baked at 160 $^\circ{\textrm{C}}$ for 12 h) under the incandescent lamp. (d) A comparison between the NG and treated FG. Through the prepared FG, we cannot see the logos and letters. The black rectangle in (c) and (d) represent the NG. The red rectangle in (c) and (d) represent the FG. (e) The reflectance of the soda lime glass before and after treated at 160 $^\circ{\textrm{C}}$ measured with the integrating sphere.
Fig. 6.
Fig. 6. The surface SEM images of FG prepared at 160 $^\circ{\textrm{C}}$ for different treating time. (a) 4 h; (b) 8 h; (b) 12 h; (b) 24 h.

Metrics