Abstract

We report temperature dependent time-resolved photoluminescence studies of Fe3+ in ZnSe polycrystals over 10–300 K temperature ranges fabricated by the post growth thermal diffusion technique. The d-d transitions of Fe3+ assigned to the 4T2(G)→6A1(S) and 4T1(G)→6A1(S) transitions are clearly identified at 528 and 627 nm, respectively, at 10 K. The observed emission peaks in the near bandgap region are red-shifted from 439 to 463 nm as the temperature increases, resulting in a temperature coefficient of 10.21×10−4 eV/K and Debye temperature = 336 K fitted by the Varshni equation. The radiative lifetime at 528 nm by time-resolved photoluminescence is evaluated as τrad = 774 ± 4 ps, activation energy (ΔEa) = 717.2 cm−1, and relaxation time rate (1/W0) = 3.1 ps.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-IR spectroscopy of Fe:ZnSe quantum dots

NoSoung Myoung, Jung Su Park, Alan Martinez, Jeremy Peppers, Sang-Youp Yim, Won Seok Han, Vladimir V. Fedorov, and Sergey B. Mirov
Opt. Express 24(5) 5366-5375 (2016)

3.9–4.8 μm gain-switched lasing of Fe:ZnSe at room temperature

J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov
Opt. Express 13(26) 10608-10615 (2005)

Energy transfer in iron-chromium co-doped ZnSe middle-infrared laser crystals

Vladimir Fedorov, Tristan Carlson, and Sergey Mirov
Opt. Mater. Express 9(5) 2340-2347 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Heitz, A. Hoffmann, and I. Broser, “Fe3+ center in ZnO,” Phys. Rev. B 45(16), 8977–8988 (1992).
    [Crossref]
  2. D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-Quality Manganese-Doped ZnSe Nanocrystals,” Nano Lett. 1(1), 3–7 (2001).
    [Crossref]
  3. N. Myoung, V. V. Fedorov, S. B. Mirov, and L. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
    [Crossref]
  4. N. Myoung, D. Martyshkin, V. Fedorov, and S. Mirov, “Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
    [Crossref]
  5. M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
    [Crossref]
  6. N. Myoung, J. Park, A. Martinez, J. Peppers, S. Yim, W. Han, V. Fedorov, and S. Mirov, “Mid-IR spectroscopy of Fe:ZnSe quantum dots,” Opt. Express 24(5), 5366–5375 (2016).
    [Crossref]
  7. M. Eskandari and V. Ahmadi, “Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photovoltage of quantum dot sensitized solar cell using Ag nanoparticles,” Electrochim. Acta 165, 239–246 (2015).
    [Crossref]
  8. J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
    [Crossref]
  9. J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
    [Crossref]
  10. M. Godlewski, W. E. Lamb, and B. C. Cavenett, “ODMR investigations of the nature of copper-green and copper-red PL bands in ZnSe,” J. Lumin. 24-25(25), 173–176 (1981).
    [Crossref]
  11. G. Jones and J. Woods, “The luminescence of self-activated and copper-doped zinc selenid,” J. Lumin. 9(5), 389–405 (1974).
    [Crossref]
  12. J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+,” Phys. Chem. Chem. Phys. 2(23), 5445–5448 (2000).
    [Crossref]
  13. M. A. Hines and P. Guyot-Sionnest, “Bright UV-blue luminescent colloidal ZnSe nanocrystals,” J. Phys. Chem. B 102(19), 3655–3657 (1998).
    [Crossref]
  14. D. F. Crabtree, “Luminescence, optical absorption, and ESR of ZnS-Se:Mn,” Phys. stat. sol. (a) 22(2), 543–552 (1974).
    [Crossref]
  15. R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalocogenide laser host crystals,” Opt. Mater. Express 6(10), 3339–3353 (2016).
    [Crossref]
  16. V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
    [Crossref]
  17. C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
    [Crossref]
  18. V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
    [Crossref]
  19. N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 µm room temperature Fe:ZnSe laser,” Opt. Lett. 36(1), 94–96 (2011).
    [Crossref]
  20. M. Surma, M. Godlewski, and T. P. Surkova, “Iron and chromium impurities in ZnSe as centers of nonradiative recombination,” Phys. Rev. B 50(12), 8319–8324 (1994).
    [Crossref]
  21. M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
    [Crossref]
  22. M. Godlewski and A. Zakrzewski, “Photo-ESR studies of the iron photo-neutralisation process in the ZnS lattice,” J. Phys. C: Solid State Phys. 18(36), 6615–6625 (1985).
    [Crossref]
  23. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5 µm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999).
    [Crossref]
  24. L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
    [Crossref]
  25. S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
    [Crossref]
  26. M. Isshiki, K. Masumoto, W. Uchida, and S. Satoh, “Estimation of the donor concentration in ZnSe from the emission related to donor bound excitons,” Jpn. J. Appl. Phys. 30(Part 1), 515–516 (1991).
    [Crossref]
  27. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  28. B. Pejova, B. Abay, and I. Bineva, “Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin film,” J. Phys. Chem. C 114(36), 15280–15291 (2010).
    [Crossref]
  29. A. B. Novoselova, Physical and Chemical Properties of Semiconductors: A Handbook Nauka, ed. (Springer, 1978).
  30. Y. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
    [Crossref]
  31. C. Weisbuch, R. Dingle, A. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlx as multi-quantum well structures,” Solid State Commun. 38(8), 709–712 (1981).
    [Crossref]
  32. G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
    [Crossref]
  33. B. Henderson and R. H. Bartran, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University Press, 2000), p. 177 .

2017 (1)

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

2016 (2)

2015 (2)

M. Eskandari and V. Ahmadi, “Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photovoltage of quantum dot sensitized solar cell using Ag nanoparticles,” Electrochim. Acta 165, 239–246 (2015).
[Crossref]

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

2014 (1)

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

2013 (1)

N. Myoung, D. Martyshkin, V. Fedorov, and S. Mirov, “Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

2012 (3)

J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
[Crossref]

2011 (1)

2010 (2)

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

B. Pejova, B. Abay, and I. Bineva, “Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin film,” J. Phys. Chem. C 114(36), 15280–15291 (2010).
[Crossref]

2006 (1)

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

2005 (1)

M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
[Crossref]

2001 (2)

D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-Quality Manganese-Doped ZnSe Nanocrystals,” Nano Lett. 1(1), 3–7 (2001).
[Crossref]

J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

2000 (1)

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+,” Phys. Chem. Chem. Phys. 2(23), 5445–5448 (2000).
[Crossref]

1999 (2)

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5 µm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999).
[Crossref]

1998 (2)

Y. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

M. A. Hines and P. Guyot-Sionnest, “Bright UV-blue luminescent colloidal ZnSe nanocrystals,” J. Phys. Chem. B 102(19), 3655–3657 (1998).
[Crossref]

1994 (1)

M. Surma, M. Godlewski, and T. P. Surkova, “Iron and chromium impurities in ZnSe as centers of nonradiative recombination,” Phys. Rev. B 50(12), 8319–8324 (1994).
[Crossref]

1992 (1)

R. Heitz, A. Hoffmann, and I. Broser, “Fe3+ center in ZnO,” Phys. Rev. B 45(16), 8977–8988 (1992).
[Crossref]

1991 (1)

M. Isshiki, K. Masumoto, W. Uchida, and S. Satoh, “Estimation of the donor concentration in ZnSe from the emission related to donor bound excitons,” Jpn. J. Appl. Phys. 30(Part 1), 515–516 (1991).
[Crossref]

1985 (1)

M. Godlewski and A. Zakrzewski, “Photo-ESR studies of the iron photo-neutralisation process in the ZnS lattice,” J. Phys. C: Solid State Phys. 18(36), 6615–6625 (1985).
[Crossref]

1981 (2)

C. Weisbuch, R. Dingle, A. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlx as multi-quantum well structures,” Solid State Commun. 38(8), 709–712 (1981).
[Crossref]

M. Godlewski, W. E. Lamb, and B. C. Cavenett, “ODMR investigations of the nature of copper-green and copper-red PL bands in ZnSe,” J. Lumin. 24-25(25), 173–176 (1981).
[Crossref]

1974 (2)

G. Jones and J. Woods, “The luminescence of self-activated and copper-doped zinc selenid,” J. Lumin. 9(5), 389–405 (1974).
[Crossref]

D. F. Crabtree, “Luminescence, optical absorption, and ESR of ZnS-Se:Mn,” Phys. stat. sol. (a) 22(2), 543–552 (1974).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Abay, B.

B. Pejova, B. Abay, and I. Bineva, “Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin film,” J. Phys. Chem. C 114(36), 15280–15291 (2010).
[Crossref]

Adams, J. J.

Ahmadi, V.

M. Eskandari and V. Ahmadi, “Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photovoltage of quantum dot sensitized solar cell using Ag nanoparticles,” Electrochim. Acta 165, 239–246 (2015).
[Crossref]

Akimov, V. A.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Aparna, Y.

S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
[Crossref]

Barnes, J. O.

Bartran, R. H.

B. Henderson and R. H. Bartran, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University Press, 2000), p. 177 .

Begum, S. M.

S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
[Crossref]

Bibeau, C.

Bineva, I.

B. Pejova, B. Abay, and I. Bineva, “Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin film,” J. Phys. Chem. C 114(36), 15280–15291 (2010).
[Crossref]

Broser, I.

R. Heitz, A. Hoffmann, and I. Broser, “Fe3+ center in ZnO,” Phys. Rev. B 45(16), 8977–8988 (1992).
[Crossref]

Burger, A.

M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
[Crossref]

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Cavenett, B. C.

M. Godlewski, W. E. Lamb, and B. C. Cavenett, “ODMR investigations of the nature of copper-green and copper-red PL bands in ZnSe,” J. Lumin. 24-25(25), 173–176 (1981).
[Crossref]

Charnock, F. T.

D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-Quality Manganese-Doped ZnSe Nanocrystals,” Nano Lett. 1(1), 3–7 (2001).
[Crossref]

Chattopadhyay, K.

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Chen, C.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

Chen, J.

J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
[Crossref]

Chen, M.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Cho, Y.

Y. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Cook, G.

Crabtree, D. F.

D. F. Crabtree, “Luminescence, optical absorption, and ESR of ZnS-Se:Mn,” Phys. stat. sol. (a) 22(2), 543–552 (1974).
[Crossref]

Cui, Y.

M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
[Crossref]

Dingle, R.

C. Weisbuch, R. Dingle, A. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlx as multi-quantum well structures,” Solid State Commun. 38(8), 709–712 (1981).
[Crossref]

Eskandari, M.

M. Eskandari and V. Ahmadi, “Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photovoltage of quantum dot sensitized solar cell using Ag nanoparticles,” Electrochim. Acta 165, 239–246 (2015).
[Crossref]

Farooq, M.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Fedorov, V.

N. Myoung, J. Park, A. Martinez, J. Peppers, S. Yim, W. Han, V. Fedorov, and S. Mirov, “Mid-IR spectroscopy of Fe:ZnSe quantum dots,” Opt. Express 24(5), 5366–5375 (2016).
[Crossref]

N. Myoung, D. Martyshkin, V. Fedorov, and S. Mirov, “Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

Fedorov, V. V.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 µm room temperature Fe:ZnSe laser,” Opt. Lett. 36(1), 94–96 (2011).
[Crossref]

Feth, S.

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Fischer, A. J.

Y. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Frolov, M. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Furu, L. H.

Gainer, G. H.

Y. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

George, M. A.

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Giles, N. C.

M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
[Crossref]

Godlewski, M.

M. Surma, M. Godlewski, and T. P. Surkova, “Iron and chromium impurities in ZnSe as centers of nonradiative recombination,” Phys. Rev. B 50(12), 8319–8324 (1994).
[Crossref]

M. Godlewski and A. Zakrzewski, “Photo-ESR studies of the iron photo-neutralisation process in the ZnS lattice,” J. Phys. C: Solid State Phys. 18(36), 6615–6625 (1985).
[Crossref]

M. Godlewski, W. E. Lamb, and B. C. Cavenett, “ODMR investigations of the nature of copper-green and copper-red PL bands in ZnSe,” J. Lumin. 24-25(25), 173–176 (1981).
[Crossref]

Goldsmith, J. H.

Gossard, A.

C. Weisbuch, R. Dingle, A. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlx as multi-quantum well structures,” Solid State Commun. 38(8), 709–712 (1981).
[Crossref]

Guha, S.

Guyot-Sionnest, P.

M. A. Hines and P. Guyot-Sionnest, “Bright UV-blue luminescent colloidal ZnSe nanocrystals,” J. Phys. Chem. B 102(19), 3655–3657 (1998).
[Crossref]

Han, J.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

Han, W.

Heitz, R.

R. Heitz, A. Hoffmann, and I. Broser, “Fe3+ center in ZnO,” Phys. Rev. B 45(16), 8977–8988 (1992).
[Crossref]

Henderson, B.

B. Henderson and R. H. Bartran, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University Press, 2000), p. 177 .

Hines, M. A.

M. A. Hines and P. Guyot-Sionnest, “Bright UV-blue luminescent colloidal ZnSe nanocrystals,” J. Phys. Chem. B 102(19), 3655–3657 (1998).
[Crossref]

Hoffmann, A.

R. Heitz, A. Hoffmann, and I. Broser, “Fe3+ center in ZnO,” Phys. Rev. B 45(16), 8977–8988 (1992).
[Crossref]

Hou, L.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Hu, C.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Isshiki, M.

M. Isshiki, K. Masumoto, W. Uchida, and S. Satoh, “Estimation of the donor concentration in ZnSe from the emission related to donor bound excitons,” Jpn. J. Appl. Phys. 30(Part 1), 515–516 (1991).
[Crossref]

Jiang, B.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Jones, G.

G. Jones and J. Woods, “The luminescence of self-activated and copper-doped zinc selenid,” J. Lumin. 9(5), 389–405 (1974).
[Crossref]

Kelly, J. J.

J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+,” Phys. Chem. Chem. Phys. 2(23), 5445–5448 (2000).
[Crossref]

Kennedy, T. A.

D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-Quality Manganese-Doped ZnSe Nanocrystals,” Nano Lett. 1(1), 3–7 (2001).
[Crossref]

Korostelin, Y. V.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Korostelin, Yu. V.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Kou, H.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Kozlovskii, V. I.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Kozlovsky, V. I.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Krein, D. M.

Krol, D. M.

Lamb, W. E.

M. Godlewski, W. E. Lamb, and B. C. Cavenett, “ODMR investigations of the nature of copper-green and copper-red PL bands in ZnSe,” J. Lumin. 24-25(25), 173–176 (1981).
[Crossref]

Landman, A. I.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Lehoczky, S. L.

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Li, J.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Li, K.

J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
[Crossref]

Li, W.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Liu, R.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Luo, M.

M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
[Crossref]

Ma, Z.

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

Martinez, A.

Martovitsky, V. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Martyshkin, D.

N. Myoung, D. Martyshkin, V. Fedorov, and S. Mirov, “Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

Martyshkin, D. V.

Masumoto, K.

M. Isshiki, K. Masumoto, W. Uchida, and S. Satoh, “Estimation of the donor concentration in ZnSe from the emission related to donor bound excitons,” Jpn. J. Appl. Phys. 30(Part 1), 515–516 (1991).
[Crossref]

Matyi, R.

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

McDaniel, S. A.

Meijerink, A.

J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+,” Phys. Chem. Chem. Phys. 2(23), 5445–5448 (2000).
[Crossref]

Mirov, S.

N. Myoung, J. Park, A. Martinez, J. Peppers, S. Yim, W. Han, V. Fedorov, and S. Mirov, “Mid-IR spectroscopy of Fe:ZnSe quantum dots,” Opt. Express 24(5), 5366–5375 (2016).
[Crossref]

N. Myoung, D. Martyshkin, V. Fedorov, and S. Mirov, “Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

Mirov, S. B.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 µm room temperature Fe:ZnSe laser,” Opt. Lett. 36(1), 94–96 (2011).
[Crossref]

Mislavskii, V. V.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Myoung, N.

N. Myoung, J. Park, A. Martinez, J. Peppers, S. Yim, W. Han, V. Fedorov, and S. Mirov, “Mid-IR spectroscopy of Fe:ZnSe quantum dots,” Opt. Express 24(5), 5366–5375 (2016).
[Crossref]

N. Myoung, D. Martyshkin, V. Fedorov, and S. Mirov, “Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 µm room temperature Fe:ZnSe laser,” Opt. Lett. 36(1), 94–96 (2011).
[Crossref]

Norris, D. J.

D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-Quality Manganese-Doped ZnSe Nanocrystals,” Nano Lett. 1(1), 3–7 (2001).
[Crossref]

Novoselova, A. B.

A. B. Novoselova, Physical and Chemical Properties of Semiconductors: A Handbook Nauka, ed. (Springer, 1978).

Page, R. H.

Pan, Y.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Park, J.

Payne, S. A.

Pejova, B.

B. Pejova, B. Abay, and I. Bineva, “Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin film,” J. Phys. Chem. C 114(36), 15280–15291 (2010).
[Crossref]

Peppers, J.

Podmar’kov, Y. P.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Podmar’kov, Yu. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Rao, M. C.

S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
[Crossref]

Rao, P. S.

S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
[Crossref]

Ravikumar, R.

S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
[Crossref]

Roy, U. N.

M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
[Crossref]

Satoh, S.

M. Isshiki, K. Masumoto, W. Uchida, and S. Satoh, “Estimation of the donor concentration in ZnSe from the emission related to donor bound excitons,” Jpn. J. Appl. Phys. 30(Part 1), 515–516 (1991).
[Crossref]

Shi L, L.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Skasyrsky, Ya. K.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Song, J. J.

Y. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Stites, R. W.

Su, C.

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Surkova, T. P.

M. Surma, M. Godlewski, and T. P. Surkova, “Iron and chromium impurities in ZnSe as centers of nonradiative recombination,” Phys. Rev. B 50(12), 8319–8324 (1994).
[Crossref]

Surma, M.

M. Surma, M. Godlewski, and T. P. Surkova, “Iron and chromium impurities in ZnSe as centers of nonradiative recombination,” Phys. Rev. B 50(12), 8319–8324 (1994).
[Crossref]

Suyver, J. F.

J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+,” Phys. Chem. Chem. Phys. 2(23), 5445–5448 (2000).
[Crossref]

Uchida, W.

M. Isshiki, K. Masumoto, W. Uchida, and S. Satoh, “Estimation of the donor concentration in ZnSe from the emission related to donor bound excitons,” Jpn. J. Appl. Phys. 30(Part 1), 515–516 (1991).
[Crossref]

van der Beek, T.

J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Volz, M. P.

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

Voronov, A. A.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Wei, J.

J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
[Crossref]

Weisbuch, C.

C. Weisbuch, R. Dingle, A. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlx as multi-quantum well structures,” Solid State Commun. 38(8), 709–712 (1981).
[Crossref]

Wenger, L.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

Wiegmann, W.

C. Weisbuch, R. Dingle, A. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlx as multi-quantum well structures,” Solid State Commun. 38(8), 709–712 (1981).
[Crossref]

Woods, J.

G. Jones and J. Woods, “The luminescence of self-activated and copper-doped zinc selenid,” J. Lumin. 9(5), 389–405 (1974).
[Crossref]

Wu, R.

J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
[Crossref]

Wuister, S. F.

J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+,” Phys. Chem. Chem. Phys. 2(23), 5445–5448 (2000).
[Crossref]

Xu, Q.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Yang, G.

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

Yang, X.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Yao, N.

D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-Quality Manganese-Doped ZnSe Nanocrystals,” Nano Lett. 1(1), 3–7 (2001).
[Crossref]

Yim, S.

Zakrzewski, A.

M. Godlewski and A. Zakrzewski, “Photo-ESR studies of the iron photo-neutralisation process in the ZnS lattice,” J. Phys. C: Solid State Phys. 18(36), 6615–6625 (1985).
[Crossref]

Zang, Y.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Zhang, J.

J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
[Crossref]

Zhang, L.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Zhong, H.

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

Zou, B.

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

Zou, S.

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

Appl. Phys. Lett. (2)

J. F. Suyver, T. van der Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

Y. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Appl. Sci. (1)

L. Hou, C. Chen, L. Zhang, Q. Xu, X. Yang, M. Farooq, J. Han, R. Liu, Y. Zang, L. Shi L, and B. Zou, “Spin-related micro-photoluminescence in Fe3+ doped ZnSe nanoribbons,” Appl. Sci. 7(1), 39 (2017).
[Crossref]

Ceram. Int. (1)

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Electrochim. Acta (1)

M. Eskandari and V. Ahmadi, “Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photovoltage of quantum dot sensitized solar cell using Ag nanoparticles,” Electrochim. Acta 165, 239–246 (2015).
[Crossref]

J. Alloys Compd. (1)

J. Wei, K. Li, J. Chen, J. Zhang, and R. Wu, “Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two-sourced evaporation,” J. Alloys Compd. 531, 86–90 (2012).
[Crossref]

J. Appl. Phys. (1)

M. Luo, N. C. Giles, U. N. Roy, Y. Cui, and A. Burger, “Energy transfer between Co2+ and Fe2+ ions in diffusion-doped ZnSe,” J. Appl. Phys. 98(8), 083507 (2005).
[Crossref]

J. Cryst. Growth (1)

C. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped Znse crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999).
[Crossref]

J. Lumin. (4)

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, D. Martyshkin, V. Fedorov, and S. Mirov, “Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

M. Godlewski, W. E. Lamb, and B. C. Cavenett, “ODMR investigations of the nature of copper-green and copper-red PL bands in ZnSe,” J. Lumin. 24-25(25), 173–176 (1981).
[Crossref]

G. Jones and J. Woods, “The luminescence of self-activated and copper-doped zinc selenid,” J. Lumin. 9(5), 389–405 (1974).
[Crossref]

J. Phys. C: Solid State Phys. (1)

M. Godlewski and A. Zakrzewski, “Photo-ESR studies of the iron photo-neutralisation process in the ZnS lattice,” J. Phys. C: Solid State Phys. 18(36), 6615–6625 (1985).
[Crossref]

J. Phys. Chem. B (1)

M. A. Hines and P. Guyot-Sionnest, “Bright UV-blue luminescent colloidal ZnSe nanocrystals,” J. Phys. Chem. B 102(19), 3655–3657 (1998).
[Crossref]

J. Phys. Chem. C (2)

G. Yang, Z. Ma, H. Zhong, S. Zou, C. Chen, J. Han, and B. Zou, “Probing exciton move and localization in solution-grown collidal CdSexS1-x alloyed nanowires by temperature- and time-resolved spectroscopy,” J. Phys. Chem. C 119(39), 22709–22717 (2015).
[Crossref]

B. Pejova, B. Abay, and I. Bineva, “Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin film,” J. Phys. Chem. C 114(36), 15280–15291 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Isshiki, K. Masumoto, W. Uchida, and S. Satoh, “Estimation of the donor concentration in ZnSe from the emission related to donor bound excitons,” Jpn. J. Appl. Phys. 30(Part 1), 515–516 (1991).
[Crossref]

Nano Lett. (1)

D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-Quality Manganese-Doped ZnSe Nanocrystals,” Nano Lett. 1(1), 3–7 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+,” Phys. Chem. Chem. Phys. 2(23), 5445–5448 (2000).
[Crossref]

Phys. Rev. B (2)

R. Heitz, A. Hoffmann, and I. Broser, “Fe3+ center in ZnO,” Phys. Rev. B 45(16), 8977–8988 (1992).
[Crossref]

M. Surma, M. Godlewski, and T. P. Surkova, “Iron and chromium impurities in ZnSe as centers of nonradiative recombination,” Phys. Rev. B 50(12), 8319–8324 (1994).
[Crossref]

Phys. stat. sol. (a) (1)

D. F. Crabtree, “Luminescence, optical absorption, and ESR of ZnS-Se:Mn,” Phys. stat. sol. (a) 22(2), 543–552 (1974).
[Crossref]

Phys. Status Solidi B (1)

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Quantum Electron. (1)

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36(4), 299–301 (2006).
[Crossref]

Solid State Commun. (1)

C. Weisbuch, R. Dingle, A. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlx as multi-quantum well structures,” Solid State Commun. 38(8), 709–712 (1981).
[Crossref]

Spectrochim. Acta, Part A (1)

S. M. Begum, M. C. Rao, Y. Aparna, P. S. Rao, and R. Ravikumar, “Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles,” Spectrochim. Acta, Part A 98, 100–104 (2012).
[Crossref]

Other (2)

B. Henderson and R. H. Bartran, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University Press, 2000), p. 177 .

A. B. Novoselova, Physical and Chemical Properties of Semiconductors: A Handbook Nauka, ed. (Springer, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Room temperature absorption and PL spectra of Fe doped ZnSe bulk crystal; (inset) absorption spectrum of Fe2+:ZnSe.
Fig. 2.
Fig. 2. (a) Schematic of possible excited state absorption and emission, and (b) temperature dependence of PL in Fe:ZnSe.
Fig. 3.
Fig. 3. (a) Temperature-dependent PL peak energies of donor-bound excitonic emission in near band edge, and (b) D1 band fitted by the Varshni equation (dotted lines).
Fig. 4.
Fig. 4. (a) Temperature-dependent kinetics of luminescence and (b) average relaxation time for band-edge emission.
Fig. 5.
Fig. 5. (a) Temperature-dependent luminescence lifetime of D1 band, and (b) fitted curve for the evaluation of thermally activated radiationless transitions.

Tables (2)

Tables Icon

Table 1. Assigned transitions and absorption/emission peaks at 10 K

Tables Icon

Table 2. Parameters estimated by the Varshni equation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E g ( T ) = E g ( 0 ) α T 2 T + β
1 τ ( T ) = 1 τ r a d + W N R
W N R = W 0 e Δ E a k B T

Metrics