Abstract

Temperature and wavelength dependence of the Verdet constant of dysprosium sesquioxide ($\mathrm{{{Dy}_2}{{O}_3}}$) transparent ceramics has been measured for the temperatures ranging from cryogenic $20\,\mathrm {K}$ up to room temperature $297\,\mathrm {K}$ and for the wavelength range starting from visible $0.6\,\mathrm {{\mu }m}$ up to mid-infrared $2.3\,\mathrm {{\mu }m}$. Several absorption bands corresponding to the electronic transitions in $\mathrm{{{Dy}_2}{{O}_3}}$ have been identified and removed from the data analysis due to high absorption of the matching wavelengths within these absorption bands. The Verdet constant data has been fitted by the multi-transition model function covering the whole temperature and wavelength range. Such fitted function could be used for the detailed design of magneto-optical devices as well as for the analysis of physical properties of the material itself.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant

Ondřej Slezák, Ryo Yasuhara, Antonio Lucianetti, and Tomáš Mocek
Opt. Mater. Express 6(11) 3683-3691 (2016)

Magneto-optical Faraday effect in dysprosium oxide (Dy2O3) based ceramics obtained by vacuum sintering

I. L. Snetkov, A. I. Yakovlev, D. A. Permin, S. S. Balabanov, and O. V. Palashov
Opt. Lett. 43(16) 4041-4044 (2018)

Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics

Hiroaki Furuse and Ryo Yasuhara
Opt. Mater. Express 7(3) 827-833 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. Vasyliev, E. G. Villora, M. Nakamura, Y. Sugahara, and K. Shimamura, “UV-visible Faraday rotators based on rare-earth fluoride single crystals: $\mathrm {LiREF_3}$LiREF3 (RE=Tb, Dy, Ho, Er, and Yb), $\mathrm {PrF_3}$PrF3, and $\mathrm {CeF_3}$CeF3,” Opt. Express 20(13), 14460–14470 (2012).
    [Crossref]
  2. P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “$\mathrm {CeF_3}$CeF3 and $\mathrm {PrF_3}$PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
    [Crossref]
  3. A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magetic field,” J. Phys. C: Solid State Phys. 11(12), L495–L498 (1978).
    [Crossref]
  4. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref]
  5. O. Slezak, R. Yasuhara, A. Lucianetti, and T. Mocek, “Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics,” Opt. Express 23(10), 13641–13647 (2015).
    [Crossref]
  6. A. Shaheen, H. Majeed, and M. S. Anwar, “Ultralarge Magneto-Optic Rotations and Rotary Dispersion in Terbium Gallium Garnet Single Crystal,” Appl. Opt. 54(17), 5549–5554 (2015).
    [Crossref]
  7. Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, J. Hong, P. Zhang, C. Shi, and Y. Wang, “Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties,” Opt. Lett. 40(5), 820–822 (2015).
    [Crossref]
  8. Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
    [Crossref]
  9. D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
    [Crossref]
  10. D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
    [Crossref]
  11. H. Furuse, R. Yasuhara, K. Hiraga, and S. Zhou, “High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics,” Opt. Mater. Express 6(1), 191–196 (2016).
    [Crossref]
  12. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
    [Crossref]
  13. I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
    [Crossref]
  14. I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of $\mathrm {Tb^{3+}:Y_2O_3}$Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
    [Crossref]
  15. G. Stevens, T. Legg, and P. Shardlow, “Integrated disruptive components for 2 $\mathrm {{\mu }m}$μm fibre lasers (ISLA): project overview and passive component development,” Proc. SPIE 9730, 973001 (2016).
    [Crossref]
  16. D. Vojna, R. Yasuhara, O. Slezak, J. Muzik, A. Lucianetti, and T. Mocek, “Verdet constant dispersion of $\mathrm {CeF_3}$CeF3 in the visible and near-infrared spectral range,” Opt. Eng. 56(6), 067105 (2017).
    [Crossref]
  17. I. L. Snetkov, A. I. Yakovlev, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Magneto-optical Faraday effect in dysprosium oxide ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) based ceramics obtained by vacuum sintering,” Opt. Lett. 43(16), 4041–4044 (2018).
    [Crossref]
  18. E. Mironov, O. Palashov, and D. Karimov, “EuF2-based crystals as media for high-power mid-infrared Faraday isolators,” Scr. Mater. 162, 54–57 (2019).
    [Crossref]
  19. O. Slezak, R. Yasuhara, A. Lucianetti, and T. Mocek, “Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant,” Opt. Mater. Express 6(11), 3683–3691 (2016).
    [Crossref]
  20. A. D. Buckingham and P. J. Stephens, “Magnetic Optical Activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
    [Crossref]
  21. A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
    [Crossref]
  22. K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
    [Crossref]
  23. U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application (Scientific Research Publishing Inc., USA2012).
  24. R. Serber, “The Theory of the Faraday Effect in Molecules,” Phys. Rev. 41(4), 489–506 (1932).
    [Crossref]
  25. J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
    [Crossref]
  26. N. P. Barnes and L. B. Petway, “Variation of the Verdet Constant with Temperature of Terbium Gallium Garnet,” J. Opt. Soc. Am. B 9(10), 1912–1915 (1992).
    [Crossref]
  27. C. Kittel, Introduction to Solid State Physics, 8th Ed., (John Wiley & Sons Inc., USA2005).
  28. D.-X. Chen, V. Skumryev, and B. Bozzo, “Calibration of AC and DC Magnetometers with a $\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3 Standard,” Rev. Sci. Instrum. 82(4), 045112 (2011).
    [Crossref]
  29. E. Loh, “Lowest $\mathrm {4f\rightarrow 5d}$4f→5d Transition of Trivalent Rare-Earth Ions in $\mathrm {CaF_2}$CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
    [Crossref]
  30. T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly $\mathrm {Tb_2O_3/Dy_2O_3}$Tb2O3/Dy2O3-Concentrated $\mathrm {B_2O_3-GA_2O_3-SiO_2-P_2O_5}$B2O3−GA2O3−SiO2−P2O5 Glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
    [Crossref]
  31. Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
    [Crossref]
  32. J. L. Adam, A. D. Docq, and J. Lucas, “Optical Transitions of $\mathrm {Dy^{3+}}$Dy3+ Ions in Fluorozirconate Glass,” J. Solid State Chem. 75(2), 403–412 (1988).
    [Crossref]
  33. K. Fukuma and M. Torii, “Absolute Calibration of Low- and High-Field magnetic Susceptibilities Using Rare Earth Oxides,” Geochem., Geophys., Geosyst. 12(8), 1–11 (2011).
    [Crossref]

2019 (2)

E. Mironov, O. Palashov, and D. Karimov, “EuF2-based crystals as media for high-power mid-infrared Faraday isolators,” Scr. Mater. 162, 54–57 (2019).
[Crossref]

A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
[Crossref]

2018 (2)

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

I. L. Snetkov, A. I. Yakovlev, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Magneto-optical Faraday effect in dysprosium oxide ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) based ceramics obtained by vacuum sintering,” Opt. Lett. 43(16), 4041–4044 (2018).
[Crossref]

2017 (1)

D. Vojna, R. Yasuhara, O. Slezak, J. Muzik, A. Lucianetti, and T. Mocek, “Verdet constant dispersion of $\mathrm {CeF_3}$CeF3 in the visible and near-infrared spectral range,” Opt. Eng. 56(6), 067105 (2017).
[Crossref]

2016 (5)

O. Slezak, R. Yasuhara, A. Lucianetti, and T. Mocek, “Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant,” Opt. Mater. Express 6(11), 3683–3691 (2016).
[Crossref]

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of $\mathrm {Tb^{3+}:Y_2O_3}$Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

G. Stevens, T. Legg, and P. Shardlow, “Integrated disruptive components for 2 $\mathrm {{\mu }m}$μm fibre lasers (ISLA): project overview and passive component development,” Proc. SPIE 9730, 973001 (2016).
[Crossref]

Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
[Crossref]

H. Furuse, R. Yasuhara, K. Hiraga, and S. Zhou, “High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics,” Opt. Mater. Express 6(1), 191–196 (2016).
[Crossref]

2015 (4)

2014 (2)

2012 (1)

2011 (3)

P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “$\mathrm {CeF_3}$CeF3 and $\mathrm {PrF_3}$PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[Crossref]

D.-X. Chen, V. Skumryev, and B. Bozzo, “Calibration of AC and DC Magnetometers with a $\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3 Standard,” Rev. Sci. Instrum. 82(4), 045112 (2011).
[Crossref]

K. Fukuma and M. Torii, “Absolute Calibration of Low- and High-Field magnetic Susceptibilities Using Rare Earth Oxides,” Geochem., Geophys., Geosyst. 12(8), 1–11 (2011).
[Crossref]

2007 (1)

2002 (2)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly $\mathrm {Tb_2O_3/Dy_2O_3}$Tb2O3/Dy2O3-Concentrated $\mathrm {B_2O_3-GA_2O_3-SiO_2-P_2O_5}$B2O3−GA2O3−SiO2−P2O5 Glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[Crossref]

1992 (1)

1990 (1)

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

1988 (1)

J. L. Adam, A. D. Docq, and J. Lucas, “Optical Transitions of $\mathrm {Dy^{3+}}$Dy3+ Ions in Fluorozirconate Glass,” J. Solid State Chem. 75(2), 403–412 (1988).
[Crossref]

1978 (1)

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magetic field,” J. Phys. C: Solid State Phys. 11(12), L495–L498 (1978).
[Crossref]

1966 (2)

A. D. Buckingham and P. J. Stephens, “Magnetic Optical Activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

E. Loh, “Lowest $\mathrm {4f\rightarrow 5d}$4f→5d Transition of Trivalent Rare-Earth Ions in $\mathrm {CaF_2}$CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
[Crossref]

1934 (1)

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

1932 (1)

R. Serber, “The Theory of the Faraday Effect in Molecules,” Phys. Rev. 41(4), 489–506 (1932).
[Crossref]

Adam, J. L.

J. L. Adam, A. D. Docq, and J. Lucas, “Optical Transitions of $\mathrm {Dy^{3+}}$Dy3+ Ions in Fluorozirconate Glass,” J. Solid State Chem. 75(2), 403–412 (1988).
[Crossref]

Anwar, M. S.

Balabanov, S.

A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
[Crossref]

Balabanov, S. S.

I. L. Snetkov, A. I. Yakovlev, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Magneto-optical Faraday effect in dysprosium oxide ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) based ceramics obtained by vacuum sintering,” Opt. Lett. 43(16), 4041–4044 (2018).
[Crossref]

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of $\mathrm {Tb^{3+}:Y_2O_3}$Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Barnes, N. P.

Bozinis, D. G.

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magetic field,” J. Phys. C: Solid State Phys. 11(12), L495–L498 (1978).
[Crossref]

Bozzo, B.

D.-X. Chen, V. Skumryev, and B. Bozzo, “Calibration of AC and DC Magnetometers with a $\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3 Standard,” Rev. Sci. Instrum. 82(4), 045112 (2011).
[Crossref]

Buckingham, A. D.

A. D. Buckingham and P. J. Stephens, “Magnetic Optical Activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

Burdick, G. W.

U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application (Scientific Research Publishing Inc., USA2012).

Chen, C.

Chen, D.-X.

D.-X. Chen, V. Skumryev, and B. Bozzo, “Calibration of AC and DC Magnetometers with a $\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3 Standard,” Rev. Sci. Instrum. 82(4), 045112 (2011).
[Crossref]

Chen, Z.

Docq, A. D.

J. L. Adam, A. D. Docq, and J. Lucas, “Optical Transitions of $\mathrm {Dy^{3+}}$Dy3+ Ions in Fluorozirconate Glass,” J. Solid State Chem. 75(2), 403–412 (1988).
[Crossref]

Donatti, D. A.

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magetic field,” J. Phys. C: Solid State Phys. 11(12), L495–L498 (1978).
[Crossref]

Fujimoto, Y.

Fukuda, T.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Fukuma, K.

K. Fukuma and M. Torii, “Absolute Calibration of Low- and High-Field magnetic Susceptibilities Using Rare Earth Oxides,” Geochem., Geophys., Geosyst. 12(8), 1–11 (2011).
[Crossref]

Furuse, H.

Gruber, J. B.

U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application (Scientific Research Publishing Inc., USA2012).

Hang, Y.

Hayakawa, T.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly $\mathrm {Tb_2O_3/Dy_2O_3}$Tb2O3/Dy2O3-Concentrated $\mathrm {B_2O_3-GA_2O_3-SiO_2-P_2O_5}$B2O3−GA2O3−SiO2−P2O5 Glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[Crossref]

Hebb, M. H.

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

Hiraga, K.

Hong, J.

Hu, Z.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Kagamitani, Y.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Kan, H.

Karimov, D.

E. Mironov, O. Palashov, and D. Karimov, “EuF2-based crystals as media for high-power mid-infrared Faraday isolators,” Scr. Mater. 162, 54–57 (2019).
[Crossref]

Kawanaka, J.

Kawashima, T.

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 8th Ed., (John Wiley & Sons Inc., USA2005).

Legg, T.

G. Stevens, T. Legg, and P. Shardlow, “Integrated disruptive components for 2 $\mathrm {{\mu }m}$μm fibre lasers (ISLA): project overview and passive component development,” Proc. SPIE 9730, 973001 (2016).
[Crossref]

Lin, H.

Liu, D.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Liu, P.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Loh, E.

E. Loh, “Lowest $\mathrm {4f\rightarrow 5d}$4f→5d Transition of Trivalent Rare-Earth Ions in $\mathrm {CaF_2}$CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
[Crossref]

Lucas, J.

J. L. Adam, A. D. Docq, and J. Lucas, “Optical Transitions of $\mathrm {Dy^{3+}}$Dy3+ Ions in Fluorozirconate Glass,” J. Solid State Chem. 75(2), 403–412 (1988).
[Crossref]

Lucianetti, A.

Machida, H.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Majeed, H.

Mironov, E.

E. Mironov, O. Palashov, and D. Karimov, “EuF2-based crystals as media for high-power mid-infrared Faraday isolators,” Scr. Mater. 162, 54–57 (2019).
[Crossref]

Mironov, E. A.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Mocek, T.

Molina, P.

Mukimov, K. M.

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

Muzik, J.

D. Vojna, R. Yasuhara, O. Slezak, J. Muzik, A. Lucianetti, and T. Mocek, “Verdet constant dispersion of $\mathrm {CeF_3}$CeF3 in the visible and near-infrared spectral range,” Opt. Eng. 56(6), 067105 (2017).
[Crossref]

Nakamura, M.

Nakatsuka, M.

Nishi, N.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly $\mathrm {Tb_2O_3/Dy_2O_3}$Tb2O3/Dy2O3-Concentrated $\mathrm {B_2O_3-GA_2O_3-SiO_2-P_2O_5}$B2O3−GA2O3−SiO2−P2O5 Glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[Crossref]

Nogami, M.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly $\mathrm {Tb_2O_3/Dy_2O_3}$Tb2O3/Dy2O3-Concentrated $\mathrm {B_2O_3-GA_2O_3-SiO_2-P_2O_5}$B2O3−GA2O3−SiO2−P2O5 Glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[Crossref]

Nozawa, H.

Palashov, O.

E. Mironov, O. Palashov, and D. Karimov, “EuF2-based crystals as media for high-power mid-infrared Faraday isolators,” Scr. Mater. 162, 54–57 (2019).
[Crossref]

A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref]

Palashov, O. V.

I. L. Snetkov, A. I. Yakovlev, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Magneto-optical Faraday effect in dysprosium oxide ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) based ceramics obtained by vacuum sintering,” Opt. Lett. 43(16), 4041–4044 (2018).
[Crossref]

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of $\mathrm {Tb^{3+}:Y_2O_3}$Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Pawlak, D. A.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Permin, D.

A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
[Crossref]

Permin, D. A.

I. L. Snetkov, A. I. Yakovlev, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Magneto-optical Faraday effect in dysprosium oxide ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) based ceramics obtained by vacuum sintering,” Opt. Lett. 43(16), 4041–4044 (2018).
[Crossref]

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of $\mathrm {Tb^{3+}:Y_2O_3}$Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Petway, L. B.

Sato, H.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Sawanobori, N.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly $\mathrm {Tb_2O_3/Dy_2O_3}$Tb2O3/Dy2O3-Concentrated $\mathrm {B_2O_3-GA_2O_3-SiO_2-P_2O_5}$B2O3−GA2O3−SiO2−P2O5 Glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[Crossref]

Serber, R.

R. Serber, “The Theory of the Faraday Effect in Molecules,” Phys. Rev. 41(4), 489–506 (1932).
[Crossref]

Shaheen, A.

Shardlow, P.

G. Stevens, T. Legg, and P. Shardlow, “Integrated disruptive components for 2 $\mathrm {{\mu }m}$μm fibre lasers (ISLA): project overview and passive component development,” Proc. SPIE 9730, 973001 (2016).
[Crossref]

Shi, C.

Shimamura, K.

Skumryev, V.

D.-X. Chen, V. Skumryev, and B. Bozzo, “Calibration of AC and DC Magnetometers with a $\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3 Standard,” Rev. Sci. Instrum. 82(4), 045112 (2011).
[Crossref]

Slezak, O.

Snetkov, I.

A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
[Crossref]

Snetkov, I. L.

I. L. Snetkov, A. I. Yakovlev, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Magneto-optical Faraday effect in dysprosium oxide ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) based ceramics obtained by vacuum sintering,” Opt. Lett. 43(16), 4041–4044 (2018).
[Crossref]

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of $\mathrm {Tb^{3+}:Y_2O_3}$Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Sokolov, B. Yu.

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

Starobor, A.

Starobor, A. V.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Stephens, P. J.

A. D. Buckingham and P. J. Stephens, “Magnetic Optical Activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

Stevens, G.

G. Stevens, T. Legg, and P. Shardlow, “Integrated disruptive components for 2 $\mathrm {{\mu }m}$μm fibre lasers (ISLA): project overview and passive component development,” Proc. SPIE 9730, 973001 (2016).
[Crossref]

Sugahara, Y.

Tang, D.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Tokita, S.

Torii, M.

K. Fukuma and M. Torii, “Absolute Calibration of Low- and High-Field magnetic Susceptibilities Using Rare Earth Oxides,” Geochem., Geophys., Geosyst. 12(8), 1–11 (2011).
[Crossref]

Valiev, U. V.

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application (Scientific Research Publishing Inc., USA2012).

Van Vleck, J. H.

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

Vasyliev, V.

Villaverde, A. B.

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magetic field,” J. Phys. C: Solid State Phys. 11(12), L495–L498 (1978).
[Crossref]

Villora, E. G.

Vojna, D.

D. Vojna, R. Yasuhara, O. Slezak, J. Muzik, A. Lucianetti, and T. Mocek, “Verdet constant dispersion of $\mathrm {CeF_3}$CeF3 in the visible and near-infrared spectral range,” Opt. Eng. 56(6), 067105 (2017).
[Crossref]

Wang, J.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, J. Hong, P. Zhang, C. Shi, and Y. Wang, “Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties,” Opt. Lett. 40(5), 820–822 (2015).
[Crossref]

Wang, X.

Wang, Y.

Xu, J.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Xu, X.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Yagi, H.

Yakovlev, A.

A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
[Crossref]

Yakovlev, A. I.

Yanagitani, T.

Yang, L.

Yasuhara, R.

Yin, H.

Yoshida, H.

Yoshikawa, A.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Zhang, J.

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

Zhang, P.

Zheleznov, D.

Zhou, S.

Annu. Rev. Phys. Chem. (1)

A. D. Buckingham and P. J. Stephens, “Magnetic Optical Activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of $\mathrm {Tb^{3+}:Y_2O_3}$Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Chem. Mater. (1)

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday Rotation Effect of Highly $\mathrm {Tb_2O_3/Dy_2O_3}$Tb2O3/Dy2O3-Concentrated $\mathrm {B_2O_3-GA_2O_3-SiO_2-P_2O_5}$B2O3−GA2O3−SiO2−P2O5 Glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[Crossref]

Geochem., Geophys., Geosyst. (1)

K. Fukuma and M. Torii, “Absolute Calibration of Low- and High-Field magnetic Susceptibilities Using Rare Earth Oxides,” Geochem., Geophys., Geosyst. 12(8), 1–11 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

J. Eur. Ceram. Soc. (1)

Z. Hu, X. Xu, J. Wang, P. Liu, D. Liu, X. Wang, J. Zhang, J. Xu, and D. Tang, “Fabrication and Spectral Properties of $\mathrm {Dy:Y_2O_3}$Dy:Y2O3 Transparent Ceramics,” J. Eur. Ceram. Soc. 38(4), 1981–1985 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. C: Solid State Phys. (1)

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magetic field,” J. Phys. C: Solid State Phys. 11(12), L495–L498 (1978).
[Crossref]

J. Solid State Chem. (1)

J. L. Adam, A. D. Docq, and J. Lucas, “Optical Transitions of $\mathrm {Dy^{3+}}$Dy3+ Ions in Fluorozirconate Glass,” J. Solid State Chem. 75(2), 403–412 (1988).
[Crossref]

Mater. Res. Bull. (1)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of $\mathrm {Tb_3Sc_2Al_3O_{12}}$Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Opt. Eng. (1)

D. Vojna, R. Yasuhara, O. Slezak, J. Muzik, A. Lucianetti, and T. Mocek, “Verdet constant dispersion of $\mathrm {CeF_3}$CeF3 in the visible and near-infrared spectral range,” Opt. Eng. 56(6), 067105 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. Express (2)

Phys. Rev. (3)

R. Serber, “The Theory of the Faraday Effect in Molecules,” Phys. Rev. 41(4), 489–506 (1932).
[Crossref]

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

E. Loh, “Lowest $\mathrm {4f\rightarrow 5d}$4f→5d Transition of Trivalent Rare-Earth Ions in $\mathrm {CaF_2}$CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
[Crossref]

Phys. Status Solidi (1)

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

Proc. SPIE (1)

G. Stevens, T. Legg, and P. Shardlow, “Integrated disruptive components for 2 $\mathrm {{\mu }m}$μm fibre lasers (ISLA): project overview and passive component development,” Proc. SPIE 9730, 973001 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

D.-X. Chen, V. Skumryev, and B. Bozzo, “Calibration of AC and DC Magnetometers with a $\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3 Standard,” Rev. Sci. Instrum. 82(4), 045112 (2011).
[Crossref]

Scr. Mater. (2)

E. Mironov, O. Palashov, and D. Karimov, “EuF2-based crystals as media for high-power mid-infrared Faraday isolators,” Scr. Mater. 162, 54–57 (2019).
[Crossref]

A. Yakovlev, I. Snetkov, D. Permin, S. Balabanov, and O. Palashov, “Faraday Rotation in Cryogenically Cooled Dysprosium based ($\mathrm{{{Dy}_2}{{O}_3}}$Dy2O3) ceramics,” Scr. Mater. 161, 32–35 (2019).
[Crossref]

Other (2)

C. Kittel, Introduction to Solid State Physics, 8th Ed., (John Wiley & Sons Inc., USA2005).

U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application (Scientific Research Publishing Inc., USA2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup used for the measurement of temperature-wavelength dependence of Verdet constant of $\mathrm {{Dy}_{2}O_3}$ ceramics. Broadband laser (spectral range $0.45-2.4\,\mathrm {{\mu }m}$ ), Input/Output polarizer - high contrast Glan polarizers, Adjustable HWP - achromatic half-wave plate fixed in motorized rotational stage ( $0.6-2.7\,\mathrm {{\mu }m}$ ), Spectrometer $1 (0.2-1.1\,\mathrm {{\mu }m}$ ),Spectrometer $2 (0.9-2.55\,\mathrm {{\mu }m}$ )
Fig. 2.
Fig. 2. a) The transmittance of the $\mathrm{{{Dy}_2}{{O}_3}}$ ceramics sample. The gray rectangles are showing the spectral regions excluded from the data analysis due to weak detected signal. b) The map of the relative measurement error consisting from the measurement error of the rotation angle, magnetic field measurement uncertainty, and the sample length measurement error. The excluded spectral regions are outlined by red lines.
Fig. 3.
Fig. 3. The dispersion of the Verdet constant at fixed temperature. a) The result for the lowest temperature under investigation $T=20\,\mathrm {K}$ and b) The result for the highest temperature under investigation $T=297\,\mathrm {K}$ . The data excluded from the analysis are marked by black crosses while the data used for fitting are represented by blue circles. The fitted function given by formula (3) is given by the solid line and the transmittance showing the low-signal regions is represented by the dashed line. The relative deviation of the fitted function from the data $\Delta V$ is also shown for each temperature.
Fig. 4.
Fig. 4. The Verdet constant of $\mathrm{{{Dy}_2}{{O}_3}}$ ceramics as a function of temperature at three fixed wavelengths $\lambda _1=0.63\,\mathrm {{\mu }m}$ , $\lambda _2=1.0\,\mathrm {{\mu }m}$ , and $\lambda _3=2.0\,\mathrm {{\mu }m}$ . The measured data are marked by the crosses, while the solid lines represent the fitted functions according to the Eq. (4). The relative deviation of the fitted functions from the data $\Delta V$ is also shown in the bottom graph.
Fig. 5.
Fig. 5. Example of the parameters obtained from the 1-D fitting of the $\lambda$ -dependent data at fixed temperature.
Fig. 6.
Fig. 6. The temperature-wavelength dependence of $\mathrm{{{Dy}_2}{{O}_3}}$ ceramics Verdet constant. The measured data are highlighted by the markers: squares for the data measured by spectrometer (S1) in the spectral range $0.6-0.94\,\mathrm {{\mu }m}$ , circles for the data captured by the spectrometer (S2) in the spectral range $0.94-2.3\,\mathrm {{\mu }m}$ , and red crosses (LS) for the data which were omitted due to signal insufficiency in the corresponding spectral range. The mesh plot represents the fitted function (FF).
Fig. 7.
Fig. 7. The relative deviation of the fitted function (2) from the experimental data. The areas of lowered signal are highlighted by the red rectangles. The areas with increased relative deviation corresponds to the wavelengths and temperatures with the Faraday rotation angle comparable to the measurement precision, usually around or less than 1 angular degree.

Tables (2)

Tables Icon

Table 1. Fitted parameters obtained from the 2-D fitting.

Tables Icon

Table 2. List of the Verdet constant values for the chosen wavelengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( ϕ H , θ , β ) = cos 2 [ 2 ϕ H + θ β ] ,
V ( λ , T ) = j [ A j λ 0 j 3 λ 2 ( λ 2 λ 0 j 2 ) 2 ( T T w ) B j λ 0 j 2 λ 2 λ 0 j 2 C j λ 0 j 2 ( λ 2 λ 0 j 2 ) ( T T w ) ] + D T T w .
V ( λ ) = j [ E j ( T f ) λ 0 j 3 λ 2 ( λ 2 λ 0 j 2 ) 2 F j ( T f ) λ 0 j 2 λ 2 λ 0 j 2 ] + G ( T f ) ,
V ( T ) = H ( λ f ) T T w I ( λ f ) .

Metrics