Abstract

We report a plasmonic refractive index sensor with a wide measurement range based on periodic gold nanocubes coupled with a gold film. The theoretical sensing range is 1.0–1.8. The structure consists of two-dimensional gratings composed of periodic nanocubes that both excite local surface plasmon resonance and stimulate propagating surface plasmon resonance. The strong resonance of the multiple surface plasmons is suitable for use in refractive index sensing and effectively reduces the full width at half maximum of the resonance peak. The sensing performance of each resonant mode in the reflected spectrum is discussed in detail. The highest sensitivity and figure of merit of the proposed sensor are 1002 nm per refractive index units (RIU) and 417 RIU−1, respectively. The proposed sensor will be useful for bio-chemical sensing applications such as measuring changes in the refractive index of gases or liquids.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microchannel-based plasmonic refractive index sensor for low refractive index detection

Emranul Haque, Md. Anwar Hossain, Yoshinori Namihira, and Feroz Ahmed
Appl. Opt. 58(6) 1547-1554 (2019)

Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor

Ahmmed A. Rifat, G. A. Mahdiraji, Yong Meng Sua, Rajib Ahmed, Y. G. Shee, and F. R. Mahamd Adikan
Opt. Express 24(3) 2485-2495 (2016)

Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region

Lili Liu, Mei Wang, Lipeng Jiao, Ting Wu, Feng Xia, Meijie Liu, Weijin Kong, Lifeng Dong, and Maojin Yun
J. Opt. Soc. Am. B 36(4) 1108-1116 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
    [Crossref]
  2. Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
    [Crossref]
  3. X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
    [Crossref]
  4. L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
    [Crossref]
  5. H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
    [Crossref]
  6. Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
    [Crossref]
  7. G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
    [Crossref]
  8. C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
    [Crossref]
  9. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
    [Crossref]
  10. Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
    [Crossref]
  11. J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
    [Crossref]
  12. L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
    [Crossref]
  13. J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
    [Crossref]
  14. J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
    [Crossref]
  15. X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
    [Crossref]
  16. X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
    [Crossref]
  17. J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
    [Crossref]
  18. D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
    [Crossref]
  19. Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
    [Crossref]
  20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  21. L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
    [Crossref]
  22. A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
    [Crossref]
  23. M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics Nanostructures - Fundam. Appl. 31, 89–98 (2018).
    [Crossref]
  24. Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
    [Crossref]
  25. X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
    [Crossref]
  26. M. P. Navas and R. K. Soni, “Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing,” Plasmonics 10(3), 681–690 (2015).
    [Crossref]
  27. C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
    [Crossref]
  28. P. Mandal, “Plasmonic Perfect Absorber for Refractive Index Sensing and SERS,” Plasmonics 11(1), 223–229 (2016).
    [Crossref]
  29. C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
    [Crossref]
  30. X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
    [Crossref]
  31. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  32. D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25(21), 25574–25587 (2017).
    [Crossref]
  33. Y. Chu and K. B. Crozier, “Experimentl study of the interaction between localized and propagatig surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [Crossref]
  34. J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
    [Crossref]
  35. A. K. Sharma and A. K. Pandey, “Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: simulated performance analysis in optical communication band,” J. Opt. Soc. Am. B 36(8), F25–F31 (2019).
    [Crossref]
  36. M. Abutoama and I. Abdulhalim, “Self-referenced biosensor based on thin dielectric grating combined with thin metal film,” Opt. Express 23(22), 28667–28682 (2015).
    [Crossref]
  37. P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
    [Crossref]
  38. A. K. Sharma and A. K. Pandey, “Design and analysis of plasmonic sensor in communication band with gold grating on nitride substrate,” Superlattices Microstruct. 130, 369–376 (2019).
    [Crossref]

2019 (20)

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]

A. K. Sharma and A. K. Pandey, “Design and analysis of plasmonic sensor in communication band with gold grating on nitride substrate,” Superlattices Microstruct. 130, 369–376 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

A. K. Sharma and A. K. Pandey, “Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: simulated performance analysis in optical communication band,” J. Opt. Soc. Am. B 36(8), F25–F31 (2019).
[Crossref]

2018 (6)

P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics Nanostructures - Fundam. Appl. 31, 89–98 (2018).
[Crossref]

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]

2017 (2)

2016 (3)

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

P. Mandal, “Plasmonic Perfect Absorber for Refractive Index Sensing and SERS,” Plasmonics 11(1), 223–229 (2016).
[Crossref]

2015 (4)

M. P. Navas and R. K. Soni, “Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing,” Plasmonics 10(3), 681–690 (2015).
[Crossref]

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

M. Abutoama and I. Abdulhalim, “Self-referenced biosensor based on thin dielectric grating combined with thin metal film,” Opt. Express 23(22), 28667–28682 (2015).
[Crossref]

2009 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdulhalim, I.

Abutoama, M.

Altug, H.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

Alvarez, D. A.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

Arora, P.

P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]

Arsenin, A. V.

Bai, X.

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Cao, J.

J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]

Cen, C.

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Cetin, A. E.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

Chen, J.

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Chen, X.

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, P. K.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Chu, Y.

Coskun, A. F.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

Crozier, K. B.

Danaie, M.

M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics Nanostructures - Fundam. Appl. 31, 89–98 (2018).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Di, L.

L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]

Du, H.

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

Duan, T.

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Fan, Q.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Fedyanin, D. Y.

Galarreta, B. C.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

Gao, D.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Gao, H.

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

He, W.

J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]

Hu, B.

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]

Hu, Y.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Hu, Z.

J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]

Huang, J.

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Huang, W.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kiani, B.

M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics Nanostructures - Fundam. Appl. 31, 89–98 (2018).
[Crossref]

Kong, Y.

J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]

Levy, U.

P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]

Li, A.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Li, D.

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

Li, R.

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]

Li, S.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Li, X.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

Liang, C.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Lin, H.

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Liu, C.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Liu, G.

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Liu, J.

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Liu, L.

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Liu, M.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Liu, Q.

Liu, X.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]

Liu, Y.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Liu, Z.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Lu, X.

Lv, J.

Mandal, P.

P. Mandal, “Plasmonic Perfect Absorber for Refractive Index Sensing and SERS,” Plasmonics 11(1), 223–229 (2016).
[Crossref]

Mao, P.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Mazurski, N.

P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]

Mu, H.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Navas, M. P.

M. P. Navas and R. K. Soni, “Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing,” Plasmonics 10(3), 681–690 (2015).
[Crossref]

Niu, G.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

Ozcan, A.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

Pan, P.

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Pandey, A. K.

A. K. Sharma and A. K. Pandey, “Design and analysis of plasmonic sensor in communication band with gold grating on nitride substrate,” Superlattices Microstruct. 130, 369–376 (2019).
[Crossref]

A. K. Sharma and A. K. Pandey, “Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: simulated performance analysis in optical communication band,” J. Opt. Soc. Am. B 36(8), F25–F31 (2019).
[Crossref]

Pang, Z.

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Peng, C.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Qi, Y.

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]

Qian, W.

J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]

Sharma, A. K.

A. K. Sharma and A. K. Pandey, “Design and analysis of plasmonic sensor in communication band with gold grating on nitride substrate,” Superlattices Microstruct. 130, 369–376 (2019).
[Crossref]

A. K. Sharma and A. K. Pandey, “Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: simulated performance analysis in optical communication band,” J. Opt. Soc. Am. B 36(8), F25–F31 (2019).
[Crossref]

Soni, R. K.

M. P. Navas and R. K. Soni, “Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing,” Plasmonics 10(3), 681–690 (2015).
[Crossref]

Stebunov, Y. V.

Su, W.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

Sun, T.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Sun, Y.

J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]

Talker, E.

P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]

Tang, C.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Tang, P.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Tang, Y.

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Tong, H.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Volkov, V. S.

Wang, B.

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

Wang, F.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Wang, J.

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]

Wang, L.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Wang, Q.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Wang, S.

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

Wang, X.

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Wang, Y.

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Wen, X.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

Wu, P.

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

Wu, X.

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Wu, Y.

Xian, T.

L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]

Xiao, S.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Yakubovsky, D. I.

Yan, Y.

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]

Yang, H.

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Yang, L.

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Yang, W.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Yang, X.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

Ye, X.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Yi, Y.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Yi, Z.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

Yu, Y.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Zhang, L.

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Zhang, T.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Zhang, X.

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]

Zhang, Y.

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Zheng, G.

J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]

Zhou, P.

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]

Zhou, Z.

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Zhu, J.

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Acta Phys. Sin. (2)

X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]

Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]

Chem. Commun. (1)

L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]

Chin. Phys. B (1)

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

IEEE Photonics J. (1)

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Mod. Opt. (1)

C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (1)

H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]

Mater. Res. Express (1)

L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Micromachines (1)

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]

Nanomaterials (1)

L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]

Nanotechnology (1)

Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Opt. Commun. (1)

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quantum Electron. (2)

X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Photonics Nanostructures - Fundam. Appl. (1)

M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics Nanostructures - Fundam. Appl. 31, 89–98 (2018).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Scr. (1)

J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]

Plasma Sci. Technol. (1)

D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]

Plasmonics (2)

P. Mandal, “Plasmonic Perfect Absorber for Refractive Index Sensing and SERS,” Plasmonics 11(1), 223–229 (2016).
[Crossref]

M. P. Navas and R. K. Soni, “Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing,” Plasmonics 10(3), 681–690 (2015).
[Crossref]

Results Phys. (2)

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]

Sci. Rep. (2)

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]

P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]

Sensors (3)

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]

X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]

J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]

Superlattices Microstruct. (1)

A. K. Sharma and A. K. Pandey, “Design and analysis of plasmonic sensor in communication band with gold grating on nitride substrate,” Superlattices Microstruct. 130, 369–376 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Three-dimensional geometric structure of the refractive index sensor. From top to bottom, the components consist of a gold nanocube square array, SiO2 spacers, gold film, and glass substrate (the black arrow indicates the direction of propagation of incident light, the blue arrow indicates the polarization direction, and the red line shows the period). (b) Schematic diagram of the calculation unit model, in which the length of the unit is set to the length of the structural period.
Fig. 2.
Fig. 2. Reflection spectrum of the composite structure, where the analyte refractive index is 1.3.
Fig. 3.
Fig. 3. Electric field distribution |E|/|E0| at the resonance wavelengths of the three modes. (a), (d), (g), and (j) Electric field distribution at the resonant wavelength of 949 nm (mode 1). (b), (e), (h), and (k) Electric field distribution at the resonant wavelength of 1310 nm (mode 2). (c), (f), (i), and (l) Electric field distribution at resonant wavelength 1715 nm (mode 3). (a), (b), and (c) Electric field distribution along the center of the gold nanocube in the X-Z plane. (d), (e), and (f) Electric field distribution on the top surface of the gold nanocube. (g), (h), and (i) Electric field distribution at the interface between the gold nanocubes and SiO2 spacers. (j), (k), and (l) Electric field distribution at the interface between the SiO2 spacers and gold film.
Fig. 4.
Fig. 4. Reflective spectra of the composite structures. The analyte refractive index ranges from 1.0 to 1.8 and the color represents the reflectivity distribution.
Fig. 5.
Fig. 5. Sensitivity curves and FOM under the three resonance modes. (a), (c), and (e) Relationship between the resonance wavelength and refractive index for modes 1, 2, and 3, respectively. (b), (d), and (f) Relationship between the FOM and refractive index for modes 1, 2, and 3, respectively.
Fig. 6.
Fig. 6. Three-dimensional structure of the improved sensor. The inset shows the side view of the sensor structure.
Fig. 7.
Fig. 7. Reflective spectra of the new structure, in which the refractive index ranges from 1.0 to 1.8 and the color represents the reflectivity distribution.

Metrics