A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]
A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]
P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]
G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]
L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]
J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]
M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics Nanostructures - Fundam. Appl. 31, 89–98 (2018).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]
D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]
J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]
Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]
M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics Nanostructures - Fundam. Appl. 31, 89–98 (2018).
[Crossref]
J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]
P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]
Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]
Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]
Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]
L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]
J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]
Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]
G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]
J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
P. Mandal, “Plasmonic Perfect Absorber for Refractive Index Sensing and SERS,” Plasmonics 11(1), 223–229 (2016).
[Crossref]
J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
M. P. Navas and R. K. Soni, “Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing,” Plasmonics 10(3), 681–690 (2015).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4(1), 6789 (2015).
[Crossref]
G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]
X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]
Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]
X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]
Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]
J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]
M. P. Navas and R. K. Soni, “Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing,” Plasmonics 10(3), 681–690 (2015).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
J. Cao, Y. Sun, Y. Kong, and W. Qian, “The sensitivity of grating-based SPR sensors with wavelength interrogation,” Sensors 19(2), 405 (2019).
[Crossref]
P. Arora, E. Talker, N. Mazurski, and U. Levy, “Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing,” Sci. Rep. 8(1), 9060 (2018).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]
Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]
Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]
H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]
X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]
X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]
Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]
Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]
Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]
Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering effect of a composite structure with gold nano-cubes and gold film separated by Polymethylmethacrylate film,” Acta Phys. Sin. 68(3), 037301 (2019).
[Crossref]
L. Di, H. Yang, T. Xian, X. Liu, and X. Chen, “Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation,” Nanomaterials 9(3), 399 (2019).
[Crossref]
X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]
H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]
X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]
X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]
C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, and P. K. Chu, “Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength,” J. Mod. Opt. 66(1), 1–6 (2019).
[Crossref]
J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
Z. Liu, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, and M. Liu, “Truncated titanium/semiconductor cones for wide-band solar absorbers,” Nanotechnology 30(30), 305203 (2019).
[Crossref]
H. Gao, F. Wang, S. Wang, X. Wang, Z. Yi, and H. Yang, “Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism,” Mater. Res. Bull. 115, 140–149 (2019).
[Crossref]
Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with au nanoparticles assembled on CaTiO3 nanocuboids,” Micromachines 10(4), 254 (2019).
[Crossref]
L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]
C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors 18(12), 4489 (2018).
[Crossref]
J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
D. Li, L. Zhang, and H. Du, “The instability of terahertz plasma waves in cylindrical FET,” Plasma Sci. Technol. 21(4), 045002 (2019).
[Crossref]
J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]
Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]
L. Zhang, Y. Zhang, Y. Hu, Q. Fan, W. Yang, A. Li, S. Li, W. Huang, and L. Wang, “Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs,” Chem. Commun. 51(2), 294–297 (2015).
[Crossref]
J. Wang, L. Yang, Z. Hu, W. He, and G. Zheng, “Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory,” IEEE Photonics Technol. Lett. 31(7), 561–564 (2019).
[Crossref]
Y. Qi, X. Zhang, P. Zhou, B. Hu, and X. Wang, “Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure,” Acta Phys. Sin. 67(19), 197301 (2018).
[Crossref]
J. Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, X. Ye, Y. Tang, Y. Yi, T. Duan, and Y. Yi, “High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials,” Phys. Scr. 94(8), 085805 (2019).
[Crossref]
Z. Yi, J. Huang, C. Cen, X. Chen, Z. Zhou, Y. Tang, B. Wang, Y. Yi, J. Wang, and P. Wu, “Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application,” Results Phys. 14, 102367 (2019).
[Crossref]
C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436, 57–62 (2019).
[Crossref]
L. Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene array,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]
X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, “Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure,” Sensors 19(5), 1187 (2019).
[Crossref]
X. Wang, H. Tong, Z. Pang, J. Zhu, X. Wu, H. Yang, and Y. Qi, “Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation,” Opt. Quantum Electron. 51(2), 38 (2019).
[Crossref]
X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
[Crossref]
X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]
Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]