Abstract

This work mainly demonstrates the development process of an ultra-broad band antireflection (AR) coating that maximizes the optical performance of germanium optical elements. A multilayer stack exhibiting high efficient AR performance on Ge consists of thin multi-layers of aluminum oxide (Al2O3) and germanium (Ge) named as low and high refractive index layer materials. A three-layer design with a very tight thickness tolerance (3%) was optimized by Optilayer software. Al2O3 and Ge layers were deposited by a plasma assisted e-beam evaporation system. Ultra-high efficient multilayer AR coating on Ge has a base reflectance 0.005% at 3550 nm and an average reflectance of 0.256% over the entire mid wave infrared spectrum. Multilayer AR coating on Ge offers lower base and average reflectance than the works reported before. Moreover, AR coating on Ge offers a cost effective process cycle due to its number of layers and its thickness for providing ultra-broadband and high efficient optical performance for mid wave infrared electro-optical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Testing of the durability of single-crystal calcium fluoride with and without antireflection coatings for use with high-power KrF excimer lasers

Doug J. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, and B. York
Appl. Opt. 31(28) 6062-6075 (1992)

References

  • View by:
  • |
  • |
  • |

  1. R. B. Singh, Introduction to Modern Physics, (New Age International, 2008).
  2. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
    [Crossref]
  3. M. Schlessinger, Infrared Technology Fundamentals, (Routledge, 2018).
  4. P. R. Yoder, Mounting Optics in Optical Instruments, (SPIE Press, 2008).
  5. V. N. Mahajan, Optical Imaging and Aberrations: Ray geometrical optics, (SPIE Press, 1998).
  6. T. Amotchkina, M. Trubetskov, A. Tikhonravov, and J. Kruschwitz, “Optical Design: Advanced thin-film software techniques improve design-to-fabrication workflow”, Laser Focus World, (Jan 2015).
  7. Sh. Furman and A. V. Tikhonravov, “Basics of optics of multilayer systems”, Editions Frontiers, Gif-sur Yvette (1992).
  8. P. C. D. Hobbs, Building Electro-Optical Systems: Making It all Work (John Wiley & Sons, 2011).
  9. T. Amotchkina, M. Trubetskov, V. Pervak, and A. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
    [Crossref]
  10. Y. Matsuoka, S. Mathonneire, S. Peters, and W. T. Masselinki, “Broadband multilayer anti-reflection coating for mid-infrared range from 7 µm to 12 µm,” Appl. Opt. 57(7), 1645–1649 (2018).
    [Crossref]
  11. M. Pancaldi, R. Freeman, M. Hudl, M. C. Hoffmann, S. Urazhdin, P. Vavassori, and S. Bonetti, “Anti-reflection coating design for metallic terahertz meta-materials,” Opt. Express 26(3), 2917–2927 (2018).
    [Crossref]
  12. F. Lemarquis, G. Marchand, and C. Amra, “Design and manufacture of low-absorption ZnS-YF3 antireflection coatings in the 3.5–16-µm spectral range,” Appl. Opt. 37(19), 4239–4244 (1998).
    [Crossref]
  13. A. Yenisoy, C. Yeşilyaprak, and S. Tüzemen, “High efficient ultra-broadband anti-reflection coating on silicon for infrared applications,” Infrared Phys. Technol. 100, 82–86 (2019).
    [Crossref]
  14. M. Bhatt, B. B. Nautiyal, and P. K. Bandyopadhyay, “High efficiency antireflection coating in MWIR region (3.6–4.9 µm) simultaneously effective for Germanium and Silicon optics,” Infrared Phys. Technol. 53(1), 33–36 (2010).
    [Crossref]
  15. J. T. Cox and G. Hass, “Antireflection Coatings for Germanium and Silicon in the Infrared,” J. Opt. Soc. Am. 48(10), 677–680 (1958).
    [Crossref]
  16. A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
    [Crossref]
  17. L. Lockhart and P. King, “Three-layered reflection-reducing coatings,” J. Opt. Soc. Am. 37(9), 689–694 (1947).
    [Crossref]
  18. P. Voarino, C. Deumie, and C. Amra, “Optical properties calculated for multidielectric quarter-wave coatings on microspheres,” Opt. Express 12(19), 4476–4482 (2004).
    [Crossref]
  19. A. Thelen, Design of Optical Interference Coatings, (McGraw-Hill, 1989).
  20. P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley, 2005).
  21. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  22. A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
    [Crossref]
  23. R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
    [Crossref]

2019 (1)

A. Yenisoy, C. Yeşilyaprak, and S. Tüzemen, “High efficient ultra-broadband anti-reflection coating on silicon for infrared applications,” Infrared Phys. Technol. 100, 82–86 (2019).
[Crossref]

2018 (3)

2016 (1)

R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
[Crossref]

2011 (1)

2010 (1)

M. Bhatt, B. B. Nautiyal, and P. K. Bandyopadhyay, “High efficiency antireflection coating in MWIR region (3.6–4.9 µm) simultaneously effective for Germanium and Silicon optics,” Infrared Phys. Technol. 53(1), 33–36 (2010).
[Crossref]

2004 (1)

2003 (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

1999 (1)

A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
[Crossref]

1998 (1)

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

1958 (1)

1947 (1)

Amotchkina, T.

T. Amotchkina, M. Trubetskov, V. Pervak, and A. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
[Crossref]

T. Amotchkina, M. Trubetskov, A. Tikhonravov, and J. Kruschwitz, “Optical Design: Advanced thin-film software techniques improve design-to-fabrication workflow”, Laser Focus World, (Jan 2015).

Amra, C.

Bandyopadhyay, P. K.

M. Bhatt, B. B. Nautiyal, and P. K. Bandyopadhyay, “High efficiency antireflection coating in MWIR region (3.6–4.9 µm) simultaneously effective for Germanium and Silicon optics,” Infrared Phys. Technol. 53(1), 33–36 (2010).
[Crossref]

A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
[Crossref]

Beneš, L.

R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
[Crossref]

Bhatt, M.

M. Bhatt, B. B. Nautiyal, and P. K. Bandyopadhyay, “High efficiency antireflection coating in MWIR region (3.6–4.9 µm) simultaneously effective for Germanium and Silicon optics,” Infrared Phys. Technol. 53(1), 33–36 (2010).
[Crossref]

Boidin, R.

R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
[Crossref]

Bonetti, S.

Chandra, P.

A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
[Crossref]

Ciesielski, A.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Cox, J. T.

Deumie, C.

Freeman, R.

Furman, Sh.

Sh. Furman and A. V. Tikhonravov, “Basics of optics of multilayer systems”, Editions Frontiers, Gif-sur Yvette (1992).

Ghosh, A.

A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
[Crossref]

Halenkovic, T.

R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
[Crossref]

Hass, G.

Hobbs, P. C. D.

P. C. D. Hobbs, Building Electro-Optical Systems: Making It all Work (John Wiley & Sons, 2011).

Hoffmann, M. C.

Hudl, M.

Kant, P.

A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
[Crossref]

King, P.

Kruschwitz, J.

T. Amotchkina, M. Trubetskov, A. Tikhonravov, and J. Kruschwitz, “Optical Design: Advanced thin-film software techniques improve design-to-fabrication workflow”, Laser Focus World, (Jan 2015).

Lemarquis, F.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Lockhart, L.

Mahajan, V. N.

V. N. Mahajan, Optical Imaging and Aberrations: Ray geometrical optics, (SPIE Press, 1998).

Marchand, G.

Masselinki, W. T.

Mathonneire, S.

Matsuoka, Y.

Nautiyal, B. B.

M. Bhatt, B. B. Nautiyal, and P. K. Bandyopadhyay, “High efficiency antireflection coating in MWIR region (3.6–4.9 µm) simultaneously effective for Germanium and Silicon optics,” Infrared Phys. Technol. 53(1), 33–36 (2010).
[Crossref]

Nazabal, V.

R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
[Crossref]

Nemec, P.

R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
[Crossref]

Nijhawan, O. P.

A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
[Crossref]

Pacuski, W.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Pancaldi, M.

Pervak, V.

Peters, S.

Rogalski, A.

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

Schlessinger, M.

M. Schlessinger, Infrared Technology Fundamentals, (Routledge, 2018).

Singh, R. B.

R. B. Singh, Introduction to Modern Physics, (New Age International, 2008).

Skowronski, L.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Szoplik, T.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Thelen, A.

A. Thelen, Design of Optical Interference Coatings, (McGraw-Hill, 1989).

Tikhonravov, A.

T. Amotchkina, M. Trubetskov, V. Pervak, and A. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
[Crossref]

T. Amotchkina, M. Trubetskov, A. Tikhonravov, and J. Kruschwitz, “Optical Design: Advanced thin-film software techniques improve design-to-fabrication workflow”, Laser Focus World, (Jan 2015).

Tikhonravov, A. V.

Sh. Furman and A. V. Tikhonravov, “Basics of optics of multilayer systems”, Editions Frontiers, Gif-sur Yvette (1992).

Trubetskov, M.

T. Amotchkina, M. Trubetskov, V. Pervak, and A. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
[Crossref]

T. Amotchkina, M. Trubetskov, A. Tikhonravov, and J. Kruschwitz, “Optical Design: Advanced thin-film software techniques improve design-to-fabrication workflow”, Laser Focus World, (Jan 2015).

Tüzemen, S.

A. Yenisoy, C. Yeşilyaprak, and S. Tüzemen, “High efficient ultra-broadband anti-reflection coating on silicon for infrared applications,” Infrared Phys. Technol. 100, 82–86 (2019).
[Crossref]

Urazhdin, S.

Vavassori, P.

Voarino, P.

Yeh, P.

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley, 2005).

Yenisoy, A.

A. Yenisoy, C. Yeşilyaprak, and S. Tüzemen, “High efficient ultra-broadband anti-reflection coating on silicon for infrared applications,” Infrared Phys. Technol. 100, 82–86 (2019).
[Crossref]

Yesilyaprak, C.

A. Yenisoy, C. Yeşilyaprak, and S. Tüzemen, “High efficient ultra-broadband anti-reflection coating on silicon for infrared applications,” Infrared Phys. Technol. 100, 82–86 (2019).
[Crossref]

Yoder, P. R.

P. R. Yoder, Mounting Optics in Optical Instruments, (SPIE Press, 2008).

Appl. Opt. (3)

Ceram. Int. (1)

R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int. 42(1), 1177–1182 (2016).
[Crossref]

Infrared Phys. Technol. (3)

A. Ghosh, P. Kant, P. K. Bandyopadhyay, P. Chandra, and O. P. Nijhawan, “Antireflection coating on germanium for dual channel (3–5 and 7.5–10.6 µm) thermal imagers,” Infrared Phys. Technol. 40(1), 49–53 (1999).
[Crossref]

A. Yenisoy, C. Yeşilyaprak, and S. Tüzemen, “High efficient ultra-broadband anti-reflection coating on silicon for infrared applications,” Infrared Phys. Technol. 100, 82–86 (2019).
[Crossref]

M. Bhatt, B. B. Nautiyal, and P. K. Bandyopadhyay, “High efficiency antireflection coating in MWIR region (3.6–4.9 µm) simultaneously effective for Germanium and Silicon optics,” Infrared Phys. Technol. 53(1), 33–36 (2010).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Mater. Sci. Semicond. Process. (1)

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Opt. Express (2)

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

Other (9)

M. Schlessinger, Infrared Technology Fundamentals, (Routledge, 2018).

P. R. Yoder, Mounting Optics in Optical Instruments, (SPIE Press, 2008).

V. N. Mahajan, Optical Imaging and Aberrations: Ray geometrical optics, (SPIE Press, 1998).

T. Amotchkina, M. Trubetskov, A. Tikhonravov, and J. Kruschwitz, “Optical Design: Advanced thin-film software techniques improve design-to-fabrication workflow”, Laser Focus World, (Jan 2015).

Sh. Furman and A. V. Tikhonravov, “Basics of optics of multilayer systems”, Editions Frontiers, Gif-sur Yvette (1992).

P. C. D. Hobbs, Building Electro-Optical Systems: Making It all Work (John Wiley & Sons, 2011).

A. Thelen, Design of Optical Interference Coatings, (McGraw-Hill, 1989).

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley, 2005).

R. B. Singh, Introduction to Modern Physics, (New Age International, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Surface roughness of Ge substrate was measured as 1.107 nm after surface treatment.
Fig. 2.
Fig. 2. R (red) and T (black) curves of Ge over MWIR spectrum
Fig. 3.
Fig. 3. Refractive index dispersion of Ge
Fig. 4.
Fig. 4. R (red) and T (black) spectra of 250 nm thick Al2O3 film on Ge substrate
Fig. 5.
Fig. 5. Refractive index dispersion of 250 nm thick Al2O3 film on Ge
Fig. 6.
Fig. 6. Thickness errors of layers in multilayer stack
Fig. 7.
Fig. 7. R (red) and T (black) spectra of multilayer AR coating on Ge over 1400 nm bandwidth.
Fig. 8.
Fig. 8. Simulated (red) and measured (black) spectra of multilayer stack for R (above) and T (below).

Tables (3)

Tables Icon

Table 1. Optical parameters of multilayer design

Tables Icon

Table 2. Thickness tolerance intervals of layers

Tables Icon

Table 3. Simulated and measured values for Tav and Rav

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( λ , T ) = 2 π h c 2 λ 5 [ e h c λ k T 1 ]
n f i l m = n 0 n s
n 2 ( λ ) = A 0 + A 1 λ 2 ( λ 2 A 2 ) + A 3 λ 2 ( λ 2 A 4 )

Metrics