Abstract

Direct femtosecond laser ablation enables the maskless fabrication of nano- and micro-scale structures on variety of materials. A typical example is the formation of femtosecond Laser Induced Periodic Surface Structures (fs-LIPSSs), which can lead to strong modification in electrical, optical, wetting, and field emission properties of materials. Here, we study the field emission properties of fs-LIPSSs. We created fs-LIPSSs and fs-LIPSSs covered with nano- and micro-scale structures at different laser fluences on Tungsten (W) and showed that these structures offer significant enhancement in electron field emission properties. We provide a phenomenological model to explain the enhancement of electron emission parameters. The enhancement in the field emission properties of laser irradiated W is explained based on the convergence of electric field lines at the ridges of the fs-LIPSSs and fs-LIPSSs covered with nanoscale structures, which in turn, enhances the local field intensity and the electron emission parameters. The direct fabrication of 1D subwavelength structures is an important step towards the creation of low-cost cathodes for various potential applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

Eduardo Granados, Miguel Martinez Calderon, Jacek Krzywinski, Eckhard Wörner, Ainara Rodriguez, Mikel Gomez Aranzadi, and Santiago M. Olaizola
Opt. Mater. Express 7(9) 3389-3396 (2017)

Direct fabricating large-area nanotriangle structure arrays on tungsten surface by nonlinear lithography of two femtosecond laser beams

Qi Liu, Nan Zhang, Jianjun Yang, Hongzhen Qiao, and Chunlei Guo
Opt. Express 26(9) 11718-11727 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  2. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
    [Crossref]
  3. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  4. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  5. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
    [Crossref]
  6. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  7. S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
    [Crossref]
  8. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
    [Crossref]
  9. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
    [Crossref]
  10. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  11. J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  12. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  13. A. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
    [Crossref]
  14. A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref]
  15. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
    [Crossref]
  16. Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
    [Crossref]
  17. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).
  18. T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition,” J. Electrochem. Soc. 157(12), D624–D627 (2010).
    [Crossref]
  19. J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
    [Crossref]
  20. E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
    [Crossref]
  21. V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
    [Crossref]
  22. C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
    [Crossref]
  23. D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
    [Crossref]
  24. A. Singh, D. Shinde, M. A. More, and S. Sinha, “Enhanced field emission from nanosecond laser based surface micro-structured stainless steel,” Appl. Surf. Sci. 357, 1313–1318 (2015).
    [Crossref]
  25. S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
    [Crossref]
  26. A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
    [Crossref]
  27. M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
    [Crossref]
  28. T. Y. Hwang, A. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
    [Crossref]
  29. E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
    [Crossref]
  30. M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
    [Crossref]
  31. Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
    [Crossref]
  32. K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).
  33. Q. Zhao, S. Malzer, and L. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
    [Crossref]
  34. J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett 27(2), 1141–1154 (1982).
    [Crossref]
  35. J. F. Young, J. Preston, H. Van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 49(26), 1955 (1983).
    [Crossref]
  36. X. Zheng, C. Cong, Y. Lei, J. Yang, and C. Guo, “Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation,” Nanomaterials 8(7), 458 (2018).
    [Crossref]
  37. A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [Crossref]
  38. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref]
  39. A. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
    [Crossref]
  40. E. Kröger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76(2), 515–523 (1976).
    [Crossref]
  41. R. Fowler and L. Nordheim, “Field emission from metallic surfaces,” Proc. R. Soc. London, Ser. A 119(781), 173–181 (1928).
    [Crossref]
  42. D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
    [Crossref]
  43. M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
    [Crossref]
  44. H. Kosmahl, “Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges,” IEEE Trans. Electron Devices 38(6), 1534–1537 (1991).
    [Crossref]
  45. R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
    [Crossref]
  46. S. A. Jalil, J. Yang, M. Elkabbash, Y. Lei, W. He, and C. Guo, “Formation of uniform two-dimensional subwavelength structures by delayed triple femtosecond laser pulse irradiation,” Opt. Lett. 44(9), 2278–2281 (2019).
    [Crossref]
  47. S. Kajita, N. Ohno, Y. Hirahata, and M. Hiramatsu, “Field emission property of nanostructured tungsten formed by helium plasma irradiation,” Fusion Eng. Des. 88(11), 2842–2847 (2013).
    [Crossref]
  48. G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
    [Crossref]
  49. M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, “"Field emission properties of low-temperature, hydrothermally grown tungsten oxide,” ACS Appl. Mater. Interfaces 3(7), 2726–2731 (2011).
    [Crossref]

2019 (2)

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

S. A. Jalil, J. Yang, M. Elkabbash, Y. Lei, W. He, and C. Guo, “Formation of uniform two-dimensional subwavelength structures by delayed triple femtosecond laser pulse irradiation,” Opt. Lett. 44(9), 2278–2281 (2019).
[Crossref]

2018 (3)

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

X. Zheng, C. Cong, Y. Lei, J. Yang, and C. Guo, “Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation,” Nanomaterials 8(7), 458 (2018).
[Crossref]

2017 (3)

S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
[Crossref]

A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
[Crossref]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

2015 (1)

A. Singh, D. Shinde, M. A. More, and S. Sinha, “Enhanced field emission from nanosecond laser based surface micro-structured stainless steel,” Appl. Surf. Sci. 357, 1313–1318 (2015).
[Crossref]

2014 (3)

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

2013 (5)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

S. Kajita, N. Ohno, Y. Hirahata, and M. Hiramatsu, “Field emission property of nanostructured tungsten formed by helium plasma irradiation,” Fusion Eng. Des. 88(11), 2842–2847 (2013).
[Crossref]

2012 (2)

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

2011 (1)

M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, “"Field emission properties of low-temperature, hydrothermally grown tungsten oxide,” ACS Appl. Mater. Interfaces 3(7), 2726–2731 (2011).
[Crossref]

2010 (3)

T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition,” J. Electrochem. Soc. 157(12), D624–D627 (2010).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

2009 (7)

A. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[Crossref]

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

T. Y. Hwang, A. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

2008 (3)

A. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

2007 (3)

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Q. Zhao, S. Malzer, and L. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
[Crossref]

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

2004 (1)

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

2002 (2)

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

2001 (1)

V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
[Crossref]

1998 (1)

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

1991 (1)

H. Kosmahl, “Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges,” IEEE Trans. Electron Devices 38(6), 1534–1537 (1991).
[Crossref]

1983 (2)

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. Preston, H. Van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 49(26), 1955 (1983).
[Crossref]

1982 (1)

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett 27(2), 1141–1154 (1982).
[Crossref]

1976 (1)

E. Kröger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76(2), 515–523 (1976).
[Crossref]

1928 (1)

R. Fowler and L. Nordheim, “Field emission from metallic surfaces,” Proc. R. Soc. London, Ser. A 119(781), 173–181 (1928).
[Crossref]

Ahmed, Q.

S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
[Crossref]

Ahn, J.-H.

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

Akram, M.

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
[Crossref]

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

Barmina, E.

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

Bashir, S.

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
[Crossref]

Basu, S.

A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
[Crossref]

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Chang, R.

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

Chen, G.

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

Chen, R.-S.

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Choi, C.-H.

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

Cong, C.

X. Zheng, C. Cong, Y. Lei, J. Yang, and C. Guo, “Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation,” Nanomaterials 8(7), 458 (2018).
[Crossref]

Dai, J.

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

Dasgupta, K.

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

Deng, S.

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

Dikonimos, T.

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

ElKabbash, M.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

S. A. Jalil, J. Yang, M. Elkabbash, Y. Lei, W. He, and C. Guo, “Formation of uniform two-dimensional subwavelength structures by delayed triple femtosecond laser pulse irradiation,” Opt. Lett. 44(9), 2278–2281 (2019).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Fotakis, C.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

Fowler, R.

R. Fowler and L. Nordheim, “Field emission from metallic surfaces,” Proc. R. Soc. London, Ser. A 119(781), 173–181 (1928).
[Crossref]

Giorgi, R.

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

Goldstein, J. I.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).

Gubko, M. A.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Guo, C.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

S. A. Jalil, J. Yang, M. Elkabbash, Y. Lei, W. He, and C. Guo, “Formation of uniform two-dimensional subwavelength structures by delayed triple femtosecond laser pulse irradiation,” Opt. Lett. 44(9), 2278–2281 (2019).
[Crossref]

X. Zheng, C. Cong, Y. Lei, J. Yang, and C. Guo, “Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation,” Nanomaterials 8(7), 458 (2018).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[Crossref]

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

T. Y. Hwang, A. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Guo, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Hang, T.

T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition,” J. Electrochem. Soc. 157(12), D624–D627 (2010).
[Crossref]

Haq, F.

S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
[Crossref]

Hayat, A.

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

He, C.

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

He, W.

Hirahata, Y.

S. Kajita, N. Ohno, Y. Hirahata, and M. Hiramatsu, “Field emission property of nanostructured tungsten formed by helium plasma irradiation,” Fusion Eng. Des. 88(11), 2842–2847 (2013).
[Crossref]

Hiramatsu, M.

S. Kajita, N. Ohno, Y. Hirahata, and M. Hiramatsu, “Field emission property of nanostructured tungsten formed by helium plasma irradiation,” Fusion Eng. Des. 88(11), 2842–2847 (2013).
[Crossref]

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

Hren, J.

V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
[Crossref]

Hsieh, C.-S.

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

Hu, A.

T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition,” J. Electrochem. Soc. 157(12), D624–D627 (2010).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Huang, Y.-S.

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

Husinsky, W.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Hwang, T. Y.

T. Y. Hwang, A. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

Ilday, F.Ö.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ionin, A. A.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Jalil, S. A.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

S. A. Jalil, J. Yang, M. Elkabbash, Y. Lei, W. He, and C. Guo, “Formation of uniform two-dimensional subwavelength structures by delayed triple femtosecond laser pulse irradiation,” Opt. Lett. 44(9), 2278–2281 (2019).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
[Crossref]

Jang, Y.-T.

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

Jiang, C.

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

Joag, D. S.

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

Joy, D. C.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).

Ju, B.-K.

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Kajita, S.

S. Kajita, N. Ohno, Y. Hirahata, and M. Hiramatsu, “Field emission property of nanostructured tungsten formed by helium plasma irradiation,” Fusion Eng. Des. 88(11), 2842–2847 (2013).
[Crossref]

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Kim, E.-K.

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

Kosmahl, H.

H. Kosmahl, “Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges,” IEEE Trans. Electron Devices 38(6), 1534–1537 (1991).
[Crossref]

Kretschmann, E.

E. Kröger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76(2), 515–523 (1976).
[Crossref]

Kröger, E.

E. Kröger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76(2), 515–523 (1976).
[Crossref]

Krüger, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kudryashov, S. I.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Kymakis, E.

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

Late, D. J.

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

Lauerhaas, J.

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

Lee, C.

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

Lee, H.

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

Lee, J. Y.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Lee, T.

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

Lee, Y.-H.

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

Lei, Y.

Li, B.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Li, M.

T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition,” J. Electrochem. Soc. 157(12), D624–D627 (2010).
[Crossref]

Li, Z.

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

Liang, B.

D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
[Crossref]

Liang, C.

Liang, Y.-M.

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

Ling, H.

T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition,” J. Electrochem. Soc. 157(12), D624–D627 (2010).
[Crossref]

Lisi, N.

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

Liu, J.

D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
[Crossref]

Liu, W.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Lizzul-Rinne, C.

V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
[Crossref]

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Lu, D.

D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
[Crossref]

Lyu, S.

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

Mahmood, K.

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

Makarov, S. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Makin, V.

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Malzer, S.

Miao, C.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Michael, J. R.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Min, N.-K.

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

More, M.

A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
[Crossref]

More, M. A.

A. Singh, D. Shinde, M. A. More, and S. Sinha, “Enhanced field emission from nanosecond laser based surface micro-structured stainless steel,” Appl. Surf. Sci. 357, 1313–1318 (2015).
[Crossref]

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

Nagatsu, M.

D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
[Crossref]

Nathala, C. R.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Newbury, D. E.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).

Nordheim, L.

R. Fowler and L. Nordheim, “Field emission from metallic surfaces,” Proc. R. Soc. London, Ser. A 119(781), 173–181 (1928).
[Crossref]

Ogino, A.

D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
[Crossref]

Ohno, N.

S. Kajita, N. Ohno, Y. Hirahata, and M. Hiramatsu, “Field emission property of nanostructured tungsten formed by helium plasma irradiation,” Fusion Eng. Des. 88(11), 2842–2847 (2013).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Peng, J.

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Preston, J.

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. Preston, H. Van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 49(26), 1955 (1983).
[Crossref]

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett 27(2), 1141–1154 (1982).
[Crossref]

Rafique, M. S.

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

Ritchie, N. W.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Rudenko, A. A.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Ruh, H.

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

Russell, T. P.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Salernitano, E.

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

Sanwald, R.

V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
[Crossref]

Scott, J. H. J.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).

Seelig, E.

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

Seleznev, L. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Serkov, A.

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

Setlur, A.

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

Shafeev, G.

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

Shinde, D.

A. Singh, D. Shinde, M. A. More, and S. Sinha, “Enhanced field emission from nanosecond laser based surface micro-structured stainless steel,” Appl. Surf. Sci. 357, 1313–1318 (2015).
[Crossref]

Singh, A.

A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
[Crossref]

A. Singh, D. Shinde, M. A. More, and S. Sinha, “Enhanced field emission from nanosecond laser based surface micro-structured stainless steel,” Appl. Surf. Sci. 357, 1313–1318 (2015).
[Crossref]

Singh, S. C.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

Singh, V. R.

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

Sinha, S.

A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
[Crossref]

A. Singh, D. Shinde, M. A. More, and S. Sinha, “Enhanced field emission from nanosecond laser based surface micro-structured stainless steel,” Appl. Surf. Sci. 357, 1313–1318 (2015).
[Crossref]

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

Sinitsyn, D. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Sipe, J.

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. Preston, H. Van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 49(26), 1955 (1983).
[Crossref]

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett 27(2), 1141–1154 (1982).
[Crossref]

Spanakis, E.

M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, “"Field emission properties of low-temperature, hydrothermally grown tungsten oxide,” ACS Appl. Mater. Interfaces 3(7), 2726–2731 (2011).
[Crossref]

Stolyarov, I.

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

Stolyarov, V.

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

Stratakis, E.

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sun, K.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Suryawanshi, S. R.

A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
[Crossref]

Tiong, K.-K.

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

Trapatseli, M.

M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, “"Field emission properties of low-temperature, hydrothermally grown tungsten oxide,” ACS Appl. Mater. Interfaces 3(7), 2726–2731 (2011).
[Crossref]

Treshin, I. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Tsai, D.-S.

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

Tsibidis, G. D.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Tzanetakis, P.

M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, “"Field emission properties of low-temperature, hydrothermally grown tungsten oxide,” ACS Appl. Mater. Interfaces 3(7), 2726–2731 (2011).
[Crossref]

Van Driel, H.

J. F. Young, J. Preston, H. Van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 49(26), 1955 (1983).
[Crossref]

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett 27(2), 1141–1154 (1982).
[Crossref]

Vernardou, D.

M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, “"Field emission properties of low-temperature, hydrothermally grown tungsten oxide,” ACS Appl. Mater. Interfaces 3(7), 2726–2731 (2011).
[Crossref]

Vorobyev, A.

A. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[Crossref]

T. Y. Hwang, A. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Wang, H.

Wang, J.

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

Wang, L.

Wang, Q.

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

Wang, W.

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

Wei, H.

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

Wei, L.

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

Wei, X.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Wojak, G.

V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
[Crossref]

Xie, Y.-H.

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Xue, L.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Yang, J.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

S. A. Jalil, J. Yang, M. Elkabbash, Y. Lei, W. He, and C. Guo, “Formation of uniform two-dimensional subwavelength structures by delayed triple femtosecond laser pulse irradiation,” Opt. Lett. 44(9), 2278–2281 (2019).
[Crossref]

X. Zheng, C. Cong, Y. Lei, J. Yang, and C. Guo, “Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation,” Nanomaterials 8(7), 458 (2018).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[Crossref]

Yang, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[Crossref]

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Young, J. F.

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. Preston, H. Van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 49(26), 1955 (1983).
[Crossref]

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett 27(2), 1141–1154 (1982).
[Crossref]

Zhang, J.

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

Zhang, L.

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

Zhang, Y.

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Zhao, Q.

Zheng, X.

X. Zheng, C. Cong, Y. Lei, J. Yang, and C. Guo, “Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation,” Nanomaterials 8(7), 458 (2018).
[Crossref]

Zhirnov, V.

V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, “"Field emission properties of low-temperature, hydrothermally grown tungsten oxide,” ACS Appl. Mater. Interfaces 3(7), 2726–2731 (2011).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Appl. Phys. A (3)

D. J. Late, V. R. Singh, S. Sinha, M. A. More, K. Dasgupta, and D. S. Joag, “Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations,” Appl. Phys. A 97(4), 905–909 (2009).
[Crossref]

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Investigation of field emission properties of laser irradiated tungsten,” Appl. Phys. A 124(2), 180 (2018).
[Crossref]

E. Barmina, A. Serkov, E. Stratakis, C. Fotakis, V. Stolyarov, I. Stolyarov, and G. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys. A 106(1), 1–4 (2012).
[Crossref]

Appl. Phys. Lett. (8)

Y.-H. Lee, C.-H. Choi, Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn, “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett. 81(4), 745–747 (2002).
[Crossref]

E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, and E. Kymakis, “Three-dimensional carbon nanowall field emission arrays,” Appl. Phys. Lett. 96(4), 043110 (2010).
[Crossref]

C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81(19), 3648–3650 (2002).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[Crossref]

Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72(22), 2912–2913 (1998).
[Crossref]

R.-S. Chen, Y.-S. Huang, Y.-M. Liang, C.-S. Hsieh, D.-S. Tsai, and K.-K. Tiong, “Field emission from vertically aligned conductive IrO 2 nanorods,” Appl. Phys. Lett. 84(9), 1552–1554 (2004).
[Crossref]

Appl. Surf. Sci. (3)

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

A. Singh, D. Shinde, M. A. More, and S. Sinha, “Enhanced field emission from nanosecond laser based surface micro-structured stainless steel,” Appl. Surf. Sci. 357, 1313–1318 (2015).
[Crossref]

A. Singh, S. R. Suryawanshi, M. More, S. Basu, and S. Sinha, “Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 396, 1310–1316 (2017).
[Crossref]

CrystEngComm (1)

J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15(7), 1296–1306 (2013).
[Crossref]

Fusion Eng. Des. (1)

S. Kajita, N. Ohno, Y. Hirahata, and M. Hiramatsu, “Field emission property of nanostructured tungsten formed by helium plasma irradiation,” Fusion Eng. Des. 88(11), 2842–2847 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

IEEE Trans. Electron Devices (1)

H. Kosmahl, “Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges,” IEEE Trans. Electron Devices 38(6), 1534–1537 (1991).
[Crossref]

Indian J. Phys. (1)

S. A. Jalil, S. Bashir, M. Akram, Q. Ahmed, and F. Haq, “Surface morphology correlated with field emission properties of laser irradiated nickel,” Indian J. Phys. 91(8), 953–965 (2017).
[Crossref]

J. Appl. Phys. (3)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

J. Electrochem. Soc. (1)

T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition,” J. Electrochem. Soc. 157(12), D624–D627 (2010).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. (1)

V. Zhirnov, C. Lizzul-Rinne, G. Wojak, R. Sanwald, and J. Hren, ““Standardization” of field emission measurements,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 19(1), 87–93 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Lu, A. Ogino, B. Liang, J. Liu, and M. Nagatsu, “Field-emission properties of nanostructured WO3 arrays fabricated using tungsten hot-filament chemical vapor deposition,” Jpn. J. Appl. Phys. 48(9), 090206 (2009).
[Crossref]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Laser Phys. Lett. (1)

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[Crossref]

Light: Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Mater. Res. Express (1)

M. Akram, S. Bashir, S. A. Jalil, M. S. Rafique, A. Hayat, and K. Mahmood, “Laser induced surface structuring of Cu for enhancement of field emission properties,” Mater. Res. Express 5(2), 025029 (2018).
[Crossref]

Nanomaterials (1)

X. Zheng, C. Cong, Y. Lei, J. Yang, and C. Guo, “Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation,” Nanomaterials 8(7), 458 (2018).
[Crossref]

Nat. Photonics (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Phys. Rev. B (5)

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. Preston, H. Van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 49(26), 1955 (1983).
[Crossref]

T. Y. Hwang, A. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, “Screening effects on field emission from arrays of (5, 5) carbon nanotubes: quantum mechanical simulations,” Phys. Rev. B 76(19), 195412 (2007).
[Crossref]

Phys. Rev. Lett (1)

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett 27(2), 1141–1154 (1982).
[Crossref]

Phys. Rev. Lett. (1)

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Phys. Status Solidi B (1)

E. Kröger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76(2), 515–523 (1976).
[Crossref]

Proc. R. Soc. London, Ser. A (1)

R. Fowler and L. Nordheim, “Field emission from metallic surfaces,” Proc. R. Soc. London, Ser. A 119(781), 173–181 (1928).
[Crossref]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Other (2)

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis (Springer, 2017).

K. Sun, J. Y. Lee, B. Li, W. Liu, C. Miao, Y.-H. Xie, X. Wei, and T. P. Russell, “Fabrication and field emission study of atomically sharp high-density tungsten nanotip arrays,” (AIP, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. A schematic of the experimental setup for the formation of subwavelength structures on the tungsten surface, using femtosecond laser beam.
Fig. 2.
Fig. 2. a) An image of entire scanned region shown for the overall view at the fluence of 1.81 J/cm2. b) SEM image of 1D uniform fs-LIPSSs by irradiation of single beam femtosecond laser pulses at the fluence of 0.09 J/cm2. c) Fs-LIPSSs with nanostructures at the fluence of 0.18 J/cm2. d) Fs-LIPSSs with nano- and micro-scale structures formed at the fluence of 0.90 J/cm2. e) Extensive nano- and micro-scale structures formed at the ridges and grooves of the fs-LIPSSs at the fluence of 1.81 J/cm2. f) An image of Fast Fourier transforms of the fs-LIPSSs structures in Fig. 2(b).
Fig. 3.
Fig. 3. J-E plots of the laser irradiated W at the fluences of a) 0.09 J/cm2 b) 0.18 J/cm2, c) 0.90 J/cm2 and d) 1.81 J/cm2. The corresponding FN plots are shown in the insets. Figs. 3(e-f) The diameter of nano- and microscale structures measured from SEM images, formed at the fluences of 0.90 J/cm2 and 1.81 J/cm2, respectively.
Fig. 4.
Fig. 4. Physical mechanism involved in electron emission from fs-LIPSSs on the tungsten surface in response to the applied electric field. Cross-sectional area of fs-LIPSSs structures containing grooves and ridges, favorable for the convergence of applied electric field. The arrows denote the maximum electric field at the ridges of fs-LIPSSs due to difference in peak-to-valley region.
Fig. 5.
Fig. 5. XRD patterns of the untreated and laser irradiated W at the fluence of 0.09 J/cm2 and (b) 1.81 J/cm2.

Tables (1)

Tables Icon

Table 1. Obtained field emission parameters for irradiated W samples at different fluences.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ=λiλi/λSPP±sinθ,
J=a(β2E2/φ)exp(bφ3/2βE),
I=1.4×106(Aβ2V2φd2)exp(6.83×109φ3/2dβV),
β=6.83×109(φ3/2dm),

Metrics