Abstract

We use the double-pulse laser-induced forward transfer (DP-LIFT) process, combining a quasi-continuous wave (QCW) and a femtosecond (fs) laser pulse to achieve jetting from a 1-µm thick copper film. The influence of the fs laser fluence on the dynamics of the liquid copper jetting is experimentally investigated by time-resolved shadowgraphy and theoretically analyzed with a simple energy balance model. Different jetting regimes are identified when varying the fs laser fluence. We demonstrate that the adjustment of this latter parameter while keeping all the others constant, allows accurate control of the diameter of the printed droplets from 1.9 µm to 6.0 µm. This leads us to a demonstration in which we print debris-free micro-pillars with an aspect ratio of 19 onto a silicon receiver substrate set as far as 60 µm away from the donor film.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics

Emeric Biver, Ludovic Rapp, Anne-Patricia Alloncle, Pere Serra, and Philippe Delaporte
Opt. Express 22(14) 17122-17134 (2014)

Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing

Qingfeng Li, Anne Patricia Alloncle, David Grojo, and Philippe Delaporte
Opt. Express 25(20) 24164-24172 (2017)

Printing of metallic 3D micro-objects by laser induced forward transfer

Michael Zenou and Zvi Kotler
Opt. Express 24(2) 1431-1446 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
    [Crossref]
  2. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
    [Crossref]
  3. C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
    [Crossref]
  4. E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
    [Crossref]
  5. C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
    [Crossref]
  6. C. Mezel, A. Souquet, L. Hallo, and F. Guillemot, “Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling,” Biofabrication 2(1), 014103 (2010).
    [Crossref]
  7. N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
    [Crossref]
  8. M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
    [Crossref]
  9. D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
    [Crossref]
  10. L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
    [Crossref]
  11. N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
    [Crossref]
  12. M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815 (2010).
    [Crossref]
  13. E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
    [Crossref]
  14. V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
    [Crossref]
  15. J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, “Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns,” Biomed. Microdevices 6(2), 139–147 (2004).
    [Crossref]
  16. C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
    [Crossref]
  17. N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
    [Crossref]
  18. F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
    [Crossref]
  19. C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
    [Crossref]
  20. Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
    [Crossref]
  21. Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
    [Crossref]
  22. U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
    [Crossref]
  23. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79(4-6), 879–881 (2004).
    [Crossref]
  24. J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A 95(3), 635–638 (2009).
    [Crossref]
  25. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
    [Crossref]
  26. D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
    [Crossref]
  27. S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
    [Crossref]
  28. N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
    [Crossref]
  29. N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
    [Crossref]
  30. R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
    [Crossref]
  31. M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5(1), 17265 (2015).
    [Crossref]
  32. C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
    [Crossref]
  33. M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
    [Crossref]
  34. Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
    [Crossref]
  35. Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Laser-induced nano-jetting behaviors of liquid metals,” Appl. Phys. A 123(11), 718 (2017).
    [Crossref]
  36. Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Dynamics of double-pulse laser printing of copper microstructures,” Appl. Surf. Sci. 471, 627–632 (2019).
    [Crossref]
  37. P. K. Notz and O. A. Basaran, “Dynamics and breakup of a contracting liquid filament,” J. Fluid Mech. 512, 223–256 (2004).
    [Crossref]
  38. M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
    [Crossref]
  39. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [Crossref]
  40. D. P. Banks, Ch. Grivas, J. D. Mills, and R. W. Eason, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
    [Crossref]
  41. M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
    [Crossref]

2019 (1)

Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Dynamics of double-pulse laser printing of copper microstructures,” Appl. Surf. Sci. 471, 627–632 (2019).
[Crossref]

2018 (3)

Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
[Crossref]

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
[Crossref]

2017 (3)

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Laser-induced nano-jetting behaviors of liquid metals,” Appl. Phys. A 123(11), 718 (2017).
[Crossref]

S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
[Crossref]

2016 (3)

N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref]

2015 (6)

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5(1), 17265 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

2014 (3)

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
[Crossref]

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
[Crossref]

2013 (1)

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

2012 (5)

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref]

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

2011 (3)

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

2010 (3)

2009 (2)

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A 95(3), 635–638 (2009).
[Crossref]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

2008 (1)

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

2007 (2)

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

2006 (1)

D. P. Banks, Ch. Grivas, J. D. Mills, and R. W. Eason, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

2004 (3)

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, “Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns,” Biomed. Microdevices 6(2), 139–147 (2004).
[Crossref]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79(4-6), 879–881 (2004).
[Crossref]

P. K. Notz and O. A. Basaran, “Dynamics and breakup of a contracting liquid filament,” J. Fluid Mech. 512, 223–256 (2004).
[Crossref]

1998 (1)

D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
[Crossref]

Alloncle, A.

Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
[Crossref]

Alloncle, A. P.

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Laser-induced nano-jetting behaviors of liquid metals,” Appl. Phys. A 123(11), 718 (2017).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref]

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Alloncle, A.-P.

Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Dynamics of double-pulse laser printing of copper microstructures,” Appl. Surf. Sci. 471, 627–632 (2019).
[Crossref]

E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
[Crossref]

Anisimov, S. I.

S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
[Crossref]

Arnold, C. B.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Banks, D. P.

D. P. Banks, Ch. Grivas, J. D. Mills, and R. W. Eason, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Barron, J. A.

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, “Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns,” Biomed. Microdevices 6(2), 139–147 (2004).
[Crossref]

Basaran, O. A.

P. K. Notz and O. A. Basaran, “Dynamics and breakup of a contracting liquid filament,” J. Fluid Mech. 512, 223–256 (2004).
[Crossref]

Benetti, M.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

Bernhard, S.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Birr, T.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
[Crossref]

Biver, E.

Bor, T.

M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
[Crossref]

Boutopoulos, C.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Brasz, C. F.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Brown, M. S.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Cannatà, D.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

Chichkov, B.

Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
[Crossref]

Chichkov, B. N.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
[Crossref]

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[Crossref]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79(4-6), 879–881 (2004).
[Crossref]

Delaporte, P.

Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Dynamics of double-pulse laser printing of copper microstructures,” Appl. Surf. Sci. 471, 627–632 (2019).
[Crossref]

Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Laser-induced nano-jetting behaviors of liquid metals,” Appl. Phys. A 123(11), 718 (2017).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref]

E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
[Crossref]

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Di Pietrantonio, F.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

Diallo, A. K.

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Diaspro, A.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Dinca, V.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

Dinescu, M.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

Duocastella, M.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815 (2010).
[Crossref]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

Eason, R. W.

D. P. Banks, Ch. Grivas, J. D. Mills, and R. W. Eason, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Evlyukhin, A. B.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
[Crossref]

Fages, F.

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Farsari, M.

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

Feinaeugle, M.

M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
[Crossref]

Fernández-Pradas, J. M.

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815 (2010).
[Crossref]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

Florian, C.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Fotakis, C.

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

Fukumura, H.

D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
[Crossref]

Georgiev, D. G.

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A 95(3), 635–638 (2009).
[Crossref]

Giardi, M. T.

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Grivas, Ch.

D. P. Banks, Ch. Grivas, J. D. Mills, and R. W. Eason, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Grojo, D.

Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Dynamics of double-pulse laser printing of copper microstructures,” Appl. Surf. Sci. 471, 627–632 (2019).
[Crossref]

Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Laser-induced nano-jetting behaviors of liquid metals,” Appl. Phys. A 123(11), 718 (2017).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref]

Gruene, M.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Guillemot, F.

C. Mezel, A. Souquet, L. Hallo, and F. Guillemot, “Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling,” Biofabrication 2(1), 014103 (2010).
[Crossref]

Hallo, L.

C. Mezel, A. Souquet, L. Hallo, and F. Guillemot, “Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling,” Biofabrication 2(1), 014103 (2010).
[Crossref]

Hiromoto, T.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Huis In ’T Veld, B.

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

Hulverscheidt, C.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

Ichinose, N.

D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
[Crossref]

Inogamov, N. A.

S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
[Crossref]

N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

Ivanov, D.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

Kafetzopoulos, D.

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

Kalpyris, I.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

Karnakis, D.

D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
[Crossref]

Kattamis, N. T.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

Kawanishi, S.

D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
[Crossref]

Khokhlov, V. A.

S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
[Crossref]

N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

Kim, H.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Kiyan, R.

Koch, J.

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref]

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79(4-6), 879–881 (2004).
[Crossref]

Koch, L.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Korte, F.

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79(4-6), 879–881 (2004).
[Crossref]

Kotler, Z.

M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5(1), 17265 (2015).
[Crossref]

Kuznetsov, A. I.

Ladouceur, H. D.

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, “Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns,” Biomed. Microdevices 6(2), 139–147 (2004).
[Crossref]

Li, Q.

Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Dynamics of double-pulse laser printing of copper microstructures,” Appl. Surf. Sci. 471, 627–632 (2019).
[Crossref]

Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Laser-induced nano-jetting behaviors of liquid metals,” Appl. Phys. A 123(11), 718 (2017).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref]

Lippert, T.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
[Crossref]

Lohse, D.

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Mattle, T.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

McDaniel, N. D.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Mezel, C.

C. Mezel, A. Souquet, L. Hallo, and F. Guillemot, “Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling,” Biofabrication 2(1), 014103 (2010).
[Crossref]

Migdal, K. P.

N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
[Crossref]

Mills, J. D.

D. P. Banks, Ch. Grivas, J. D. Mills, and R. W. Eason, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Miyanaga, N.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Moening, J. P.

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A 95(3), 635–638 (2009).
[Crossref]

Momoo, K.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Morenza, J. L.

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815 (2010).
[Crossref]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

Murzov, S. A.

S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
[Crossref]

Nagel, M.

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Nakata, Y.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Nénon, S.

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Notz, P. K.

P. K. Notz and O. A. Basaran, “Dynamics and breakup of a contracting liquid filament,” J. Fluid Mech. 512, 223–256 (2004).
[Crossref]

Overmeyer, L.

Palla-Papavlu, A.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

Patrascioiu, A.

Perazzo, A.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Petrov, Y. V.

N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
[Crossref]

Pezzotti, I.

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Piazza, S.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Piqué, A.

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Pohl, R.

M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
[Crossref]

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Popescu, A.

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

Purnick, P. E.

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

Ranella, A.

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

Rapp, L.

E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
[Crossref]

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Reinhardt, C.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
[Crossref]

Reininghaus, M.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

Ringeisen, B. R.

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, “Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns,” Biomed. Microdevices 6(2), 139–147 (2004).
[Crossref]

Römer, G. W.

M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

Sa’ar, A.

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5(1), 17265 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

Serpetzoglou, E.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

Serra, P.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

E. Biver, L. Rapp, A.-P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122–17134 (2014).
[Crossref]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815 (2010).
[Crossref]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Souquet, A.

C. Mezel, A. Souquet, L. Hallo, and F. Guillemot, “Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling,” Biofabrication 2(1), 014103 (2010).
[Crossref]

Stone, H. A.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Sun, C.

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

Thanawala, S. S.

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A 95(3), 635–638 (2009).
[Crossref]

Touloupakis, E.

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Turkoz, E.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Unger, C.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Vaneker, T.

M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
[Crossref]

Ventikos, Y.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Verona, E.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

Videlot-Ackerman, C.

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Visser, C. W.

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

Weiss, R.

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

Wortmann, D.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

Wu, P.

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, “Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns,” Biomed. Microdevices 6(2), 139–147 (2004).
[Crossref]

Zenou, M.

M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5(1), 17265 (2015).
[Crossref]

Zergioti, I.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Zhakhovskii, V. V.

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

Zhakhovsky, V. V.

S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
[Crossref]

N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
[Crossref]

Zywietz, U.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Addit. Manuf. (1)

M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G. W. Römer, “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films,” Addit. Manuf. 24, 391–399 (2018).
[Crossref]

Adv. Mater. (1)

C. W. Visser, R. Pohl, C. Sun, G. W. Römer, B. Huis in ’t Veld, D. Lohse, B. Huis In ’T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref]

Appl. Phys. A (5)

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Laser-induced nano-jetting behaviors of liquid metals,” Appl. Phys. A 123(11), 718 (2017).
[Crossref]

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114(1), 45–50 (2014).
[Crossref]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79(4-6), 879–881 (2004).
[Crossref]

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A 95(3), 635–638 (2009).
[Crossref]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Appl. Phys. Lett. (3)

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

D. P. Banks, Ch. Grivas, J. D. Mills, and R. W. Eason, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Appl. Surf. Sci. (3)

D. Karnakis, T. Lippert, N. Ichinose, S. Kawanishi, and H. Fukumura, “Laser induced molecular transfer using ablation of a triazeno-polymer,” Appl. Surf. Sci. 127-129, 781–786 (1998).
[Crossref]

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Dynamics of double-pulse laser printing of copper microstructures,” Appl. Surf. Sci. 471, 627–632 (2019).
[Crossref]

Biofabrication (1)

C. Mezel, A. Souquet, L. Hallo, and F. Guillemot, “Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling,” Biofabrication 2(1), 014103 (2010).
[Crossref]

Biomed. Microdevices (2)

V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, and C. Fotakis, “Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer,” Biomed. Microdevices 10(5), 719–725 (2008).
[Crossref]

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, “Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns,” Biomed. Microdevices 6(2), 139–147 (2004).
[Crossref]

J. Appl. Phys. (1)

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

J. Exp. Theor. Phys. (2)

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, “Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse,” J. Exp. Theor. Phys. 120(1), 15–48 (2015).
[Crossref]

J. Fluid Mech. (2)

P. K. Notz and O. A. Basaran, “Dynamics and breakup of a contracting liquid filament,” J. Fluid Mech. 512, 223–256 (2004).
[Crossref]

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

J. Laser Appl. (1)

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl. 24(4), 042017 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

Microfluid. Nanofluid. (1)

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

MRS Bull. (1)

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Nanophotonics (1)

Q. Li, D. Grojo, A. Alloncle, B. Chichkov, and P. Delaporte, “Digital laser micro- and nanoprinting,” Nanophotonics 8(1), 27–44 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Y. V. Petrov, and K. P. Migdal, “Solitary Nanostructures Produced by Ultrashort Laser Pulse,” Nanoscale Res. Lett. 11(1), 177 (2016).
[Crossref]

Opt. Express (6)

Org. Electron. (1)

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Phys. Rev. Appl. (1)

R. Pohl, C. W. Visser, G. W. Römer, D. Lohse, C. Sun, and B. Huis in ’T Veld, “Ejection regimes in picosecond laser-induced forward transfer of metals,” Phys. Rev. Appl. 3(2), 024001 (2015).
[Crossref]

Phys. Rev. Lett. (1)

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Quantum Electron. (1)

S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, S. A. Murzov, and V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam,” Quantum Electron. 47(6), 509–521 (2017).
[Crossref]

Sci. Rep. (1)

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5(1), 17265 (2015).
[Crossref]

Sens. Actuators, B (1)

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators, B 174, 158–167 (2012).
[Crossref]

Thin Solid Films (1)

L. Rapp, A. K. Diallo, S. Nénon, A. P. Alloncle, C. Videlot-Ackerman, F. Fages, M. Nagel, T. Lippert, and P. Delaporte, “Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: impact of a protecting triazene layer,” Thin Solid Films 520(7), 3043–3047 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Sketch of the experimental setup for DP-LIFT. The QCW laser beam is in red, the femtosecond LIFT laser beam is in green, and the nanosecond flashlight is in blue. (b) Time chart for synchronization of the DP-LIFT and time-resolved observations.
Fig. 2.
Fig. 2. Displacement evolutions of ejection fronts and tails induced under different femtosecond laser fluence: (a) 8.0 J/cm2; (b) 10.3 J/cm2; (c) 30.0 J/cm2. Scale bar: 10 µm. The dash lines on the shadowgraphy images indicate the interface of donor and air. The jitter of the flash is approximately 20 ns, shown with the horizontal error bars on the data.
Fig. 3.
Fig. 3. Copper ejection velocity (measured at 100 ns) as a function of the femtosecond laser fluence. The different colored parts correspond to the different jetting regimes when the ejected material has traveled 50µm away from the donor surface. The blue squares are the measured values of the ejection velocity from the shadowgraphy experiments and the red dots represented the values of the velocity calculated thanks to the Eq. (3).
Fig. 4.
Fig. 4. Time-resolved shadowgraphy observations of ejections under different femtosecond laser fluences.
Fig. 5.
Fig. 5. Laser pulse fluence dependence of the micro-deposit diameter. (a) SEM angled views (50$^\circ $) of droplets printed under different femtosecond laser fluences, scale bar: 2 µm. (b) SEM top views of droplet arrays, scale bar: 20 µm. The applied laser fluences (from 8.2 J/cm2 to 29.3 J/cm2) are the same for all droplets in each line.
Fig. 6.
Fig. 6. 2.5D microstructures printed by DP-LIFT process. (a) SEM image of a micro-column array for which each column is stacked by three deposits, scale bar: 10 µm. (b) SEM image of a micro-column with an aspect ratio of 19 obtained by nine stacked deposits, scale bar: 10 µm.

Tables (1)

Tables Icon

Table 1. Numerical values used to calculate the ejection velocities from Eq. (3). We did not take into account the temperature dependence of these values.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔET=ΔEk+ΔEs+ΔEd.
ΔET=Evap=EabsAfemto(dvLm+dvCp(TvT)),
Vej=2CAfemto[FabsρdvCp(TvT)]γAsρhlAej.
Oh=ηργl102,

Metrics