Abstract

A single-mode Te-rich chalcogenide (ChG) fiber for mid-infrared has been fabricated via an isolated extrusion method. The optical loss of the fiber is 3-4 dB/m in a range of 6.5-10.5 µm. Mid-infrared (MIR) supercontinuum (SC) generations were experimentally investigated in the step-index single-mode fiber with femtosecond laser pulse from an optical parametric amplifier (OPA). By pumping 17 cm-long fiber at 5 µm and 8 µm, the spectra spanning from 1.8 to 15 µm and 2.3 to 14.5 µm, respectively, were observed. The results show that the efficiency of SC generation is highest by pumping at near zero dispersion wavelength in single-mode fiber. It reveals that the superiority of single-mode fiber in SC generation over multimode is the elimination of high-order modes (HOMs) interaction. Besides, a repeat SC experiment was carried out for fiber stability test after half a year.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber

Bo Wu, Zheming Zhao, Xunsi Wang, Youmei Tian, Nan Mi, Peng Chen, Zugang Xue, Zijun Liu, Peiqing Zhang, Xiang Shen, Qiuhua Nie, Shixun Dai, and Rongping Wang
Opt. Mater. Express 8(5) 1341-1348 (2018)

Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber

D. Jayasuriya, C. R. Petersen, D. Furniss, C. Markos, Z. Tang, MD. S. Habib, O. Bang, T. M Benson, and A. B Seddon
Opt. Mater. Express 9(6) 2617-2629 (2019)

Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber

Kai Jiao, Jinmei Yao, Zheming Zhao, Xiange Wang, Nian Si, Xunsi Wang, Peng Chen, Zugang Xue, Youmei Tian, Bin Zhang, Peiqing Zhang, Shixun Dai, Qiuhua Nie, and Rongping Wang
Opt. Express 27(3) 2036-2043 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
    [Crossref]
  2. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  4. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref]
  5. C. A. Xia, M. Kumar, O. R. Kulkarni, M. N. Islam, F. L. Terry, and M. J. Freeman, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [Crossref]
  6. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  7. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  8. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [Crossref]
  9. S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
    [Crossref]
  10. A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
    [Crossref]
  11. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  12. F. Theberge, N. Thire, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallee, and F. Legare, “Multioctave infrared supercontinuum generation in large-core As2Se3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
    [Crossref]
  13. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref]
  14. L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  µm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
    [Crossref]
  15. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15348 (2017).
    [Crossref]
  16. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  17. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref]
  18. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  19. N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311 (2019).
    [Crossref]
  20. A. Lemière, F. Désévédavy, P. Mathey, P. Froidevaux, G. Gadret, J.-C. Jules, C. Aquilina, B. Kibler, P. Béjot, F. Billard, O. Faucher, and F. Smektala, “Mid-infrared supercontinuum generation from 2 to 14 µm in arsenic- and antimony-free chalcogenide glass fibers,” J. Opt. Soc. Am. B 36(2), A183 (2019).
    [Crossref]
  21. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
    [Crossref]
  22. C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
    [Crossref]
  23. J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
    [Crossref]
  24. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  25. P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
    [Crossref]

2019 (2)

2018 (1)

P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
[Crossref]

2017 (2)

2016 (5)

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  µm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

2015 (2)

2014 (3)

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

F. Theberge, N. Thire, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallee, and F. Legare, “Multioctave infrared supercontinuum generation in large-core As2Se3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

2013 (2)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

2012 (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2008 (1)

2007 (1)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

2006 (3)

C. A. Xia, M. Kumar, O. R. Kulkarni, M. N. Islam, F. L. Terry, and M. J. Freeman, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

2004 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abouraddy, A. F.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

Alamgir, I.

Amraoui, M. E.

Antipov, S.

Aquilina, C.

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Bang, O.

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15348 (2017).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Beecher, S.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Béjot, P.

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bernier, M.

Billard, F.

Bookey, H.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Boussard-Pledel, C.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

Brilland, L.

Bureau, B.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Caillaud, C.

Châtigny, S.

Chen, P.

P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
[Crossref]

Cheng, C.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Cheng, T.

Choi, D.-Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cordeiro, C. M.

Couillard, J.-F.

Coulombier, Q.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Cronin-Golomb, M.

Dai, S.

Dai, S. X.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Daigle, J. F.

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

Delarosbil, J.-L.

Désévédavy, F.

Domachuk, P.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Elder, I.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Engelsholm, R. D.

Faucher, O.

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Fortin, V.

Freeman, M. J.

Froidevaux, P.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gadret, G.

Gai, X.

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Gauthier, J.-C.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

George, A. K.

Guo, W.

Hodelin, J.

Houizot, P.

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

Hu, T.

Hudson, D. D.

Islam, M. N.

Jackson, S. D.

Jiang, C.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Jules, J.-C.

Kar, A. K.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Kibler, B.

Knight, J. C.

Kubat, I.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kulkarni, O. R.

Kumar, M.

Lamb, R.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Legare, F.

Lemière, A.

Lenz, G.

Li, G.

Li, L.

Liao, F. X.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Liu, S.

Liu, Z.

P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

Liu, Z. J.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Lucas, J.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

Lucas, P.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Madden, S.

Markos, C.

Mathey, P.

Mathieu, P.

Matsumoto, M.

McCarthy, J.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Messaddeq, Y.

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Nagasaka, K.

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Nie, Q.

Nie, Q. H.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Ohishi, Y.

Omenetto, F. G.

Pan, Z.

Peng, X.

Petersen, C. R.

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15348 (2017).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Robichaud, L.-R.

Rochette, M.

Sanghera, J.

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Schmidt, B. E.

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

Shen, X.

Slusher, R. E.

Smektala, F.

A. Lemière, F. Désévédavy, P. Mathey, P. Froidevaux, G. Gadret, J.-C. Jules, C. Aquilina, B. Kibler, P. Béjot, F. Billard, O. Faucher, and F. Smektala, “Mid-infrared supercontinuum generation from 2 to 14 µm in arsenic- and antimony-free chalcogenide glass fibers,” J. Opt. Soc. Am. B 36(2), A183 (2019).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Su, J.

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, L.

Suzuki, T.

Tang, Z.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tao, G.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Tao, G. M.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Terry, F. L.

Tezuka, H.

Theberge, F.

Thire, N.

Tian, Y.

P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
[Crossref]

Trolès, J.

Tuan, T. H.

Vallee, R.

Vallée, R.

Wang, A.

Wang, R.

Wang, T.

Wang, X.

Wang, X. S.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Wang, Y.

N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311 (2019).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Wei, W.

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Wolchover, N. A.

Xia, C. A.

Xu, H. J.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Xue, X.

Xue, Z.

P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
[Crossref]

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yang, P.

Yang, Z.

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref]

Yuan, Y.

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref]

Zhang, N.

Zhang, P.

Zhang, P. Q.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Zhang, X. H.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

Zhao, Z.

P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

Zhou, B.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhu, M. M.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Zhu, Q. D.

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Adv. Funct. Mater. (1)

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16(14), 1847–1852 (2006).
[Crossref]

Adv. Mater. (1)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Appl. Phys. B (1)

P. Chen, Z. Xue, Y. Tian, Z. Zhao, X. Wang, Z. Liu, and P. Zhang, “Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers,” Appl. Phys. B 124(6), 118 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2–12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Opt. Eng. (1)

C. Jiang, X. S. Wang, M. M. Zhu, H. J. Xu, Q. H. Nie, S. X. Dai, G. M. Tao, X. Shen, C. Cheng, Q. D. Zhu, F. X. Liao, P. Q. Zhang, P. Q. Zhang, Z. J. Liu, and X. H. Zhang, “Preparation of chalcogenide glass fiber using an improved extrusion method,” Opt. Eng. 55(5), 056114 (2016).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Lett. (6)

C. A. Xia, M. Kumar, O. R. Kulkarni, M. N. Islam, F. L. Terry, and M. J. Freeman, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[Crossref]

F. Theberge, N. Thire, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallee, and F. Legare, “Multioctave infrared supercontinuum generation in large-core As2Se3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  µm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14 µm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Status Solidi B (1)

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Measured and calculated ChG fiber parameters: (a) Measured refractive indices of the core and cladding glasses, and the calculated NA; (b) Calculated dispersion profiles of the core material (black) and the FM (red line), together with the normalized frequency V (blue line)
Fig. 2.
Fig. 2. (a) Measured optical loss of the single-mode fiber; (b) Cross-section image of the fiber (1000X)
Fig. 3.
Fig. 3. Experimental SC spectra in 17-cm long fiber pumped by: (a) 5 µm, (b) 8 µm laser. The power values in the labels are the mean output power from the OPA recorded by the power-meter
Fig. 4.
Fig. 4. The bandwidths of the SC spectra generated in the fiber pumped at 5 µm and 8 µm with different pump powers.
Fig. 5.
Fig. 5. Numerical simulation results with: (a) 5 µm pump, (b) 8 µm pump

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V = π D c o r e λ N A ,
n 2 = 4 , 27 × 10 16 ( n 0 2 1 ) 4 n 0 2 c m 2 / W

Metrics