Abstract

We investigate the coherent absorption properties of bulk Dirac semimetal (BDS) metasurfaces. The calculation results show that two coherent beams with the same intensity are irradiated from the opposite direction to the BDS metasurface, inducing the surface plasmon resonance in the terahertz band. By adjusting their relative phase, the absorption intensity can almost be tuned consecutively from 99.95% to less than 0.01%. In addition, the intensity and peak frequency of the coherent absorption can be dynamically adjusted through Fermi energy of the BDS metasurface, with the frequency shifting from 1.24 to 1.36 THz. This research shows that BDS has potential application prospects in the design of coherent detectors and modulators.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals

Ming Chen, Chen Chen, Shijie Deng, Houquan Liu, Chuanxin Teng, Yu Cheng, Hongyan Yang, Ronghui Xu, Hongchang Deng, and Libo Yuan
OSA Continuum 2(8) 2477-2486 (2019)

Bidirectional and dynamically tunable THz absorber with Dirac semimetal

Haiyu Meng, Xiongjun Shang, Xiongxiong Xue, Kezheng Tang, Shengxuan Xia, Xiang Zhai, Ziran Liu, Jianghua Chen, Hongjian Li, and Lingling Wang
Opt. Express 27(21) 31062-31074 (2019)

Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets

Yi Su, Qi Lin, Xiang Zhai, Xin Luo, and Ling-Ling Wang
Opt. Mater. Express 8(4) 884-892 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Fan, Z. Liu, and F. L. Zhang, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
    [Crossref]
  2. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
    [Crossref]
  3. T. Timusk, J. P. Carbotte, and C. C. Homes, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
    [Crossref]
  4. X. Wan, A. M. Turner, and A. Vishwanath, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
    [Crossref]
  5. Y. Su, Q. Lin, and X. Zhai, “Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets,” Opt. Mater. Express 8(4), 884–892 (2018).
    [Crossref]
  6. Y. Su, Q. Lin, and X. Zhai, “Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides,” Nanoscale Res. Lett. 13(1), 308 (2018).
    [Crossref]
  7. S. Shen, Y. Liu, and W. Liu, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
    [Crossref]
  8. S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. De Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref]
  9. T. V. Teperik, F. J. G. De Abajo, and A. G. Borisov, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [Crossref]
  10. N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  11. Y. D. Chong, L. Ge, and H. Cao, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref]
  12. X. Fang, M. L. Tseng, and J. Y. Ou, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]
  13. H. Noh, Y. Chong, and A. D. Stone, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
    [Crossref]
  14. J. Zhang, C. Guo, and K. Liu, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
    [Crossref]
  15. Y. Fan, F. Zhang, and Q. Zhao, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref]
  16. N. Kakenov, O. Balci, and T. Takan, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
    [Crossref]
  17. V. Thareja, J. H. Kang, and H. Yuan, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
    [Crossref]
  18. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015).
    [Crossref]
  19. Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
    [Crossref]
  20. B. H. Zhang, J. H. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
    [Crossref]
  21. H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
    [Crossref]
  22. B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
    [Crossref]
  23. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
    [Crossref]
  24. Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref]
  25. G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
    [Crossref]
  26. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
    [Crossref]
  27. G. D. Liu, X. Zhai, and H. Y. Meng, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
    [Crossref]
  28. H. Chen, H. Zhang, and M. Liu, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
    [Crossref]
  29. H. Chen, H. Zhang, and Y. Zhao, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
    [Crossref]
  30. M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
    [Crossref]
  31. L. L. Dai, Y. P. Zhang, X. H. Guo, Y. K. Zhao, S. D. Liu, and H. Y. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
    [Crossref]
  32. T. L. Wang, M. Y. Cao, Y. P. Zhang, and H. Y. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
    [Crossref]
  33. L. L. Dai, Y. P. Zhang, and H. Y. Zhang, “Broadband tunable terahertz cross-polarization converter based on Dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
    [Crossref]
  34. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
    [Crossref]
  35. K. I. Bolotin, K. J. Sikes, and Z. Jiang, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
    [Crossref]

2019 (4)

B. H. Zhang, J. H. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

T. L. Wang, M. Y. Cao, Y. P. Zhang, and H. Y. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

L. L. Dai, Y. P. Zhang, and H. Y. Zhang, “Broadband tunable terahertz cross-polarization converter based on Dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

2018 (8)

H. Chen, H. Zhang, and Y. Zhao, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

L. L. Dai, Y. P. Zhang, X. H. Guo, Y. K. Zhao, S. D. Liu, and H. Y. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

G. D. Liu, X. Zhai, and H. Y. Meng, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

Y. Su, Q. Lin, and X. Zhai, “Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets,” Opt. Mater. Express 8(4), 884–892 (2018).
[Crossref]

Y. Su, Q. Lin, and X. Zhai, “Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides,” Nanoscale Res. Lett. 13(1), 308 (2018).
[Crossref]

S. Shen, Y. Liu, and W. Liu, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

2017 (2)

H. Chen, H. Zhang, and M. Liu, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
[Crossref]

2016 (3)

V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

N. Kakenov, O. Balci, and T. Takan, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

2015 (3)

V. Thareja, J. H. Kang, and H. Yuan, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref]

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015).
[Crossref]

Y. C. Fan, Z. Liu, and F. L. Zhang, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

2014 (6)

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

J. Zhang, C. Guo, and K. Liu, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
[Crossref]

Y. Fan, F. Zhang, and Q. Zhao, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

X. Fang, M. L. Tseng, and J. Y. Ou, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

2013 (2)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

T. Timusk, J. P. Carbotte, and C. C. Homes, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

2012 (2)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. De Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

H. Noh, Y. Chong, and A. D. Stone, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref]

2011 (1)

X. Wan, A. M. Turner, and A. Vishwanath, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

2010 (2)

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Y. D. Chong, L. Ge, and H. Cao, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

2008 (2)

T. V. Teperik, F. J. G. De Abajo, and A. G. Borisov, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

K. I. Bolotin, K. J. Sikes, and Z. Jiang, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Arju, N.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Azad, Z. K.

B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Balci, O.

N. Kakenov, O. Balci, and T. Takan, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, and Z. Jiang, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Borisenko, S.

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

Borisov, A. G.

T. V. Teperik, F. J. G. De Abajo, and A. G. Borisov, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Büchner, B.

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

Cao, H.

Y. D. Chong, L. Ge, and H. Cao, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Cao, M. Y.

Carbotte, J. P.

T. Timusk, J. P. Carbotte, and C. C. Homes, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Cava, R. J.

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

Chen, D. C.

M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
[Crossref]

Chen, H.

H. Chen, H. Zhang, and Y. Zhao, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, and M. Liu, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Chen, Q.

Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Chen, Y. L.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Chong, Y.

H. Noh, Y. Chong, and A. D. Stone, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref]

Chong, Y. D.

Y. D. Chong, L. Ge, and H. Cao, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Dai, L. L.

L. L. Dai, Y. P. Zhang, and H. Y. Zhang, “Broadband tunable terahertz cross-polarization converter based on Dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

L. L. Dai, Y. P. Zhang, X. H. Guo, Y. K. Zhao, S. D. Liu, and H. Y. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

Dai, X.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

De Abajo, F. J. G.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. De Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

T. V. Teperik, F. J. G. De Abajo, and A. G. Borisov, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Evtushinsky, D.

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

Fan, Y.

Fan, Y. C.

Y. C. Fan, Z. Liu, and F. L. Zhang, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Fang, X.

X. Fang, M. L. Tseng, and J. Y. Ou, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Fang, Z.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Ge, L.

Y. D. Chong, L. Ge, and H. Cao, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Gibson, Q.

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

Guo, C.

Guo, X. H.

Homes, C. C.

T. Timusk, J. P. Carbotte, and C. C. Homes, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Hu, X.

Huang, Z.

B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Hussain, Z.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Jiang, Z.

K. I. Bolotin, K. J. Sikes, and Z. Jiang, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Kakenov, N.

N. Kakenov, O. Balci, and T. Takan, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Kang, J. H.

V. Thareja, J. H. Kang, and H. Yuan, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref]

Kholmanov, I.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. De Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Kotov, V.

V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Li, H. J.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

Li, J. H.

Li, T. T.

Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Lin, Q.

Y. Su, Q. Lin, and X. Zhai, “Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides,” Nanoscale Res. Lett. 13(1), 308 (2018).
[Crossref]

Y. Su, Q. Lin, and X. Zhai, “Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets,” Opt. Mater. Express 8(4), 884–892 (2018).
[Crossref]

Liu, C.

B. H. Zhang, J. H. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

Liu, G. D.

Liu, K.

Liu, M.

Liu, N.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, S. D.

Liu, W.

S. Shen, Y. Liu, and W. Liu, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Liu, Y.

S. Shen, Y. Liu, and W. Liu, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Liu, Y. M.

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

Liu, Z.

Y. C. Fan, Z. Liu, and F. L. Zhang, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Liu, Z. K.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Lozovik, Y. E.

V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Meng, H. Y.

Mesch, M.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Mo, S. K.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Mousavi, S. H.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Nie, G.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Noh, H.

H. Noh, Y. Chong, and A. D. Stone, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref]

O’Hara, J. F.

Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Ou, J. Y.

X. Fang, M. L. Tseng, and J. Y. Ou, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Peng, Y. L.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

Prabhakaran, D.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Purtseladze, D.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Qin, M.

M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
[Crossref]

Shen, S.

S. Shen, Y. Liu, and W. Liu, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Shen, Z. X.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Shi, J.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Shi, Q.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, and Z. Jiang, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Singh, A.

B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Stone, A. D.

H. Noh, Y. Chong, and A. D. Stone, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref]

Su, Y.

Y. Su, Q. Lin, and X. Zhai, “Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides,” Nanoscale Res. Lett. 13(1), 308 (2018).
[Crossref]

Y. Su, Q. Lin, and X. Zhai, “Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets,” Opt. Mater. Express 8(4), 884–892 (2018).
[Crossref]

Takan, T.

N. Kakenov, O. Balci, and T. Takan, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Teperik, T. V.

T. V. Teperik, F. J. G. De Abajo, and A. G. Borisov, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Thareja, V.

V. Thareja, J. H. Kang, and H. Yuan, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. De Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Timusk, T.

T. Timusk, J. P. Carbotte, and C. C. Homes, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Tseng, M. L.

X. Fang, M. L. Tseng, and J. Y. Ou, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Turner, A. M.

X. Wan, A. M. Turner, and A. Vishwanath, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Vishwanath, A.

X. Wan, A. M. Turner, and A. Vishwanath, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Wan, X.

X. Wan, A. M. Turner, and A. Vishwanath, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Wang, J.

Wang, L. L.

M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
[Crossref]

Wang, T. L.

Wang, Z. J.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Weng, H. M.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Wu, D.

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

Wu, K.

Xia, S. X.

M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
[Crossref]

Xiong, C. X.

B. H. Zhang, J. H. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

Xu, H.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

B. H. Zhang, J. H. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

Xu, Z. H.

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

Yao, Y.

B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Ye, H.

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

Yu, L.

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

Yu, Z. Y.

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

Yuan, H.

V. Thareja, J. H. Kang, and H. Yuan, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref]

Zabolotnyy, V.

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

Zeng, B.

B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Zhai, X.

Y. Su, Q. Lin, and X. Zhai, “Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides,” Nanoscale Res. Lett. 13(1), 308 (2018).
[Crossref]

Y. Su, Q. Lin, and X. Zhai, “Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets,” Opt. Mater. Express 8(4), 884–892 (2018).
[Crossref]

G. D. Liu, X. Zhai, and H. Y. Meng, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
[Crossref]

Zhang, B. H.

B. H. Zhang, J. H. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

Zhang, F.

Zhang, F. L.

Y. C. Fan, Z. Liu, and F. L. Zhang, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Zhang, H.

H. Chen, H. Zhang, and Y. Zhao, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, and M. Liu, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Zhang, H. Y.

L. L. Dai, Y. P. Zhang, and H. Y. Zhang, “Broadband tunable terahertz cross-polarization converter based on Dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

T. L. Wang, M. Y. Cao, Y. P. Zhang, and H. Y. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

L. L. Dai, Y. P. Zhang, X. H. Guo, Y. K. Zhao, S. D. Liu, and H. Y. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Zhang, J.

Zhang, Y.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Zhang, Y. P.

L. L. Dai, Y. P. Zhang, and H. Y. Zhang, “Broadband tunable terahertz cross-polarization converter based on Dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

T. L. Wang, M. Y. Cao, Y. P. Zhang, and H. Y. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

L. L. Dai, Y. P. Zhang, X. H. Guo, Y. K. Zhao, S. D. Liu, and H. Y. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Zhao, M. Z.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

B. H. Zhang, J. H. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

Zhao, Q.

Zhao, Y.

H. Chen, H. Zhang, and Y. Zhao, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Zhao, Y. K.

Zheng, M. F.

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

Zhou, B.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Zhu, Z.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

ACS Photonics (1)

N. Kakenov, O. Balci, and T. Takan, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Appl. Phys. Express (1)

L. L. Dai, Y. P. Zhang, and H. Y. Zhang, “Broadband tunable terahertz cross-polarization converter based on Dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

Appl. Phys. Lett. (2)

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

X. Fang, M. L. Tseng, and J. Y. Ou, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. Xu, M. Z. Zhao, M. F. Zheng, C. X. Xiong, B. H. Zhang, Y. L. Peng, and H. J. Li, “Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects,” J. Phys. D: Appl. Phys. 52(2), 025104 (2019).
[Crossref]

Light: Sci. Appl. (1)

B. Zeng, Z. Huang, A. Singh, Y. Yao, and Z. K. Azad, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Mater. Res. Express (1)

S. Shen, Y. Liu, and W. Liu, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Nano Lett. (3)

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

V. Thareja, J. H. Kang, and H. Yuan, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, and N. Arju, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Nanoscale Res. Lett. (3)

Z. H. Xu, D. Wu, Y. M. Liu, C. Liu, Z. Y. Yu, L. Yu, and H. Ye, “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref]

M. Qin, L. L. Wang, X. Zhai, D. C. Chen, and S. X. Xia, “Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring,” Nanoscale Res. Lett. 12(1), 578 (2017).
[Crossref]

Y. Su, Q. Lin, and X. Zhai, “Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides,” Nanoscale Res. Lett. 13(1), 308 (2018).
[Crossref]

Nat. Photonics (1)

T. V. Teperik, F. J. G. De Abajo, and A. G. Borisov, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

H. Chen, H. Zhang, and Y. Zhao, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (4)

Phys. Rev. B (3)

V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

T. Timusk, J. P. Carbotte, and C. C. Homes, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

X. Wan, A. M. Turner, and A. Vishwanath, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Phys. Rev. Lett. (4)

S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal,” Phys. Rev. Lett. 113(2), 027603 (2014).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. De Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Y. D. Chong, L. Ge, and H. Cao, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

H. Noh, Y. Chong, and A. D. Stone, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref]

Sci. Rep. (2)

Y. C. Fan, Z. Liu, and F. L. Zhang, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, and J. F. O’Hara, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Science (1)

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-Dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Solid State Commun. (1)

K. I. Bolotin, K. J. Sikes, and Z. Jiang, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) schematic diagram of coherent Dirac Semimetal metasurfaces. Two coherent counter-propagating beams are illuminated perpendicularly from the opposite sides on the Dirac semimetal films. (b) a unit cell of the nanostructure. The geometric parameters of proposed structure are Px= 220 μm, Py = 210 μm, l = 80 μm, and s = 5 μm.
Fig. 2.
Fig. 2. (a) The simulated reflection, transmission and absorption intensity of the Dirac semimetal films illuminated by a single beam (or two incident beams detuning). (b) The phases of transmission and reflection coefficients.
Fig. 3.
Fig. 3. (a) Normalized total scattering output intensity are illuminated by two coherent incident lights with the same intensity. Solid lines and dashed lines present even and odd modes respectively. (b) Phase difference between even reflection and odd reflection. (c) The figure of electric field at the perfect absorption peak f = 1.34 THz, the absorption valley f = 1.41 THz at (d), and the second absorption peak f = 1.63 THz at (e).
Fig. 4.
Fig. 4. Phase modulation of coherent absorption under two coherent beams of the same intensity to the Dirac semimetal films from opposite sides.
Fig. 5.
Fig. 5. (a) The absorption coefficient changes with the ratio of the intensity of two coherent beams when there is no relative phase difference. (b) The absorption intensity varies with the Fermi energy Ef in the Dirac semimetal films. With the increase of Ef, the absorption peak frequency shifts blue.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Re { σ ( Ω ) } = e 2 g k F 24 π Ω G ( Ω / 2 )
Im σ ( Ω ) = e 2 g k F 24 π 2 { 4 Ω [ 1 + π 2 3 ( T E f ) 2 ] + 8 Ω 0 ε c [ G ( ε ) G ( Ω / 2 ) Ω 2 4 ε 2 ] ε d ε }
ε = ε b + i σ / ω ε 0
( O + O ) = S ( I + I ) = ( t r + r t + ) ( I + e i φ + I e i φ )
O + = t I + e i φ + + r I e i φ _
O = r I + e i φ + + t I e i φ
A c o h = 1 | O + | 2 + | O | 2 | I + | 2 + | I | 2 = 1 ( | t | 2 | r | 2 ) 2 | t r | ( 1 + cos Δ φ 1 cos Δ φ 2 2 | I + I | | I + | 2 + | I | 2 )

Metrics