Abstract

The objective of this work is to quantify the refractive index of germanium films relative to film thickness. The films are fabricated using radio-frequency sputter deposition with film thickness spanning 820 nm to 3950 nm. The dispersive refractive index of the films is measured by Fabry-Perot transmission measurements. Using this data, it is then verified by full-spectral matching of the resonant response of guided-mode resonance grating structures fabricated into the films. This is a new method to quantify the dispersion response of materials that can be deposited to form thin films. At a wavelength of 10 µm, the refractive index is found to vary from 3.84 for an 820 nm thick film to a value of 4.6 for a 3950 nm thick film. This, respectively, represents a ∼4% decrease and a ∼15% increase from the intrinsic crystalline refractive index. Chemical composition of the films is verified using energy dispersive spectroscopy with the film structure analyzed using X-ray diffraction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy

F. Verger, V. Nazabal, F. Colas, P. Němec, C. Cardinaud, E. Baudet, R. Chahal, E. Rinnert, K. Boukerma, I. Peron, S. Deputier, M. Guilloux-Viry, J.P. Guin, H. Lhermite, A. Moreac, C. Compère, and B. Bureau
Opt. Mater. Express 3(12) 2112-2131 (2013)

Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region

Richard Soref, Joshua R. Hendrickson, and Julian Sweet
Opt. Express 24(9) 9369-9382 (2016)

Optical quality ZnSe films and low loss waveguides on Si substrates for mid-infrared applications

Vinita Mittal, Neil P. Sessions, James S. Wilkinson, and Ganapathy Senthil Murugan
Opt. Mater. Express 7(3) 712-725 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.
  2. A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.
  3. G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, “Fabrication of amorphous silicon–germanium thin film solar cell toward broadening long wavelength response,” J. Alloys Compd. 658(15), 543–547 (2016).
    [Crossref]
  4. V. Sorianello, L. Colace, C. Maragliano, D. Fulgoni, L. Nash, and G. Assanto, “Germanium-on-Glass solar cells: fabrication and characterization,” Opt. Mater. Express 3(2), 216–228 (2013).
    [Crossref]
  5. D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
    [Crossref]
  6. S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.
  7. H. T. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, G. Roelkens, and J. Van Campenhout, “High-Responsivity Low-Voltage 28-Gb/s Ge p-i-n Photodetector With Silicon Contacts,” J. Lightwave Technol. 33(4), 820–824 (2015).
    [Crossref]
  8. J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.
  9. G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium Mid-Infrared Photonic Devices,” J. Lightwave Technol. 35(4), 624–630 (2017).
    [Crossref]
  10. J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24(11), 11855–11864 (2016).
    [Crossref]
  11. T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
    [Crossref]
  12. T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
    [Crossref]
  13. D. A. Kozak, T. H. Stievater, M. W. Mahon, M. W. Pruessner, and W. S. Rabinovich, “Long-Wave Infrared Germanium-on-Silicon Waveguides Beyond 10 µm,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper SF3J.8.
  14. A. Osman, M. Nedeljkovic, J. Soler Penades, Y. Wu, Z. Qu, A. Z. Khokhar, K. Debnath, and G. Z. Mashanovich, “Suspended low-loss germanium waveguides for the longwave infrared,” Opt. Lett. 43(24), 5997–6000 (2018).
    [Crossref]
  15. B. Hogan, S. P. Hegarty, L. Lewis, J. Romero-Vivas, T. J. Ochalski, and G. Huyet, “Realization of high-contrast gratings operating at 10  µm,” Opt. Lett. 41(21), 5130 (2016).
    [Crossref]
  16. M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
    [Crossref]
  17. D. J. Carney and R. Magnusson, “Fabrication methods for infrared resonant devices,” Opt. Lett. 43(21), 5198–5201 (2018).
    [Crossref]
  18. L. J. Pilione, K. Vedam, J. E. Yehoda, and R. Messier, “Thickness dependence of optical gap and void fraction for sputtered amorphous germanium,” Phys. Rev. B 35(17), 9368–9371 (1987).
    [Crossref]
  19. J. C. G. de Sande, C. N. Afonso, J. L. Escudero, R. Serna, F. Catalina, and E. Bernabeu, “Optical properties of laser-deposited a-Ge films: a comparison with sputtered and e-beam-deposited films,” Appl. Opt. 31(28), 6133–6138 (1992).
    [Crossref]
  20. J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
    [Crossref]
  21. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref]
  22. A. Perot and C. Fabry, “On the application of interference phenomena to the solution of various problems of spectroscopy and metrology,” Astrophys. J. 9, 87 (1899).
    [Crossref]
  23. J. H. Burnett, S. G. Kaplan, E. Stover, and A. Phenis, “Refractive index measurements of Ge,” Proc. SPIE 9974, Infrared Sensors, Devices, and Applications VI, 99740X (20 September 2016); doi: 10.1117/12.2237978
  24. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  25. H. W. Chiu, C. N. Chervin, and S. M. Kauzlarich, “Phase Changes in Ge Nanoparticles,” Chem. Mater. 17(19), 4858–4864 (2005).
    [Crossref]
  26. H. E. Swanson and R. K. Fuyat, “Standard X-ray Diffraction Patterns,” NBS Circular 539 2, 14–16 (1953).

2018 (4)

2017 (1)

2016 (3)

2015 (2)

D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
[Crossref]

H. T. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, G. Roelkens, and J. Van Campenhout, “High-Responsivity Low-Voltage 28-Gb/s Ge p-i-n Photodetector With Silicon Contacts,” J. Lightwave Technol. 33(4), 820–824 (2015).
[Crossref]

2013 (1)

2005 (1)

H. W. Chiu, C. N. Chervin, and S. M. Kauzlarich, “Phase Changes in Ge Nanoparticles,” Chem. Mater. 17(19), 4858–4864 (2005).
[Crossref]

2004 (1)

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

1993 (1)

1992 (1)

1987 (1)

L. J. Pilione, K. Vedam, J. E. Yehoda, and R. Messier, “Thickness dependence of optical gap and void fraction for sputtered amorphous germanium,” Phys. Rev. B 35(17), 9368–9371 (1987).
[Crossref]

1986 (1)

J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
[Crossref]

1981 (1)

1953 (1)

H. E. Swanson and R. K. Fuyat, “Standard X-ray Diffraction Patterns,” NBS Circular 539 2, 14–16 (1953).

1899 (1)

A. Perot and C. Fabry, “On the application of interference phenomena to the solution of various problems of spectroscopy and metrology,” Astrophys. J. 9, 87 (1899).
[Crossref]

Absil, P.

Afonso, C. N.

Alam, M. M.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Amin, N.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Assanto, G.

Ben Masaud, T.

Bernabeu, E.

Bhuiyan, M. A. M.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Blanco, J. R.

J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
[Crossref]

Burnett, J. H.

J. H. Burnett, S. G. Kaplan, E. Stover, and A. Phenis, “Refractive index measurements of Ge,” Proc. SPIE 9974, Infrared Sensors, Devices, and Applications VI, 99740X (20 September 2016); doi: 10.1117/12.2237978

Cao, W.

Carney, D. J.

Catalina, F.

Chang, C.-Y.

Chen, H. T.

Chen, S.

S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.

Cheng, Z.

T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
[Crossref]

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref]

Chervin, C. N.

H. W. Chiu, C. N. Chervin, and S. M. Kauzlarich, “Phase Changes in Ge Nanoparticles,” Chem. Mater. 17(19), 4858–4864 (2005).
[Crossref]

Chiu, H. W.

H. W. Chiu, C. N. Chervin, and S. M. Kauzlarich, “Phase Changes in Ge Nanoparticles,” Chem. Mater. 17(19), 4858–4864 (2005).
[Crossref]

Chong, H. M. H.

Colace, L.

De Coster, J.

De Heyn, P.

de Sande, J. C. G.

Debnath, K.

Diao, H. W.

G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, “Fabrication of amorphous silicon–germanium thin film solar cell toward broadening long wavelength response,” J. Alloys Compd. 658(15), 543–547 (2016).
[Crossref]

Elalamy, Z.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

Enoch, S.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

Escoubas, L.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

Escudero, J. L.

Fabry, C.

A. Perot and C. Fabry, “On the application of interference phenomena to the solution of various problems of spectroscopy and metrology,” Astrophys. J. 9, 87 (1899).
[Crossref]

Fulgoni, D.

Fuyat, R. K.

H. E. Swanson and R. K. Fuyat, “Standard X-ray Diffraction Patterns,” NBS Circular 539 2, 14–16 (1953).

Gallais, P.

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

Gardes, F. Y.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium Mid-Infrared Photonic Devices,” J. Lightwave Technol. 35(4), 624–630 (2017).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.

Gaylord, T. K.

Germain, C.

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

Goda, K.

T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
[Crossref]

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref]

Hegarty, S. P.

Hogan, B.

Huang, S.

S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.

Huang, W.

S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.

Hugues, G.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

Huyet, G.

Kamezawa, S.

D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
[Crossref]

Kang, J.

Kaplan, S. G.

J. H. Burnett, S. G. Kaplan, E. Stover, and A. Phenis, “Refractive index measurements of Ge,” Proc. SPIE 9974, Infrared Sensors, Devices, and Applications VI, 99740X (20 September 2016); doi: 10.1117/12.2237978

Kauzlarich, S. M.

H. W. Chiu, C. N. Chervin, and S. M. Kauzlarich, “Phase Changes in Ge Nanoparticles,” Chem. Mater. 17(19), 4858–4864 (2005).
[Crossref]

Khokar, A. Z.

F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.

Khokhar, A. Z.

Kozak, D. A.

D. A. Kozak, T. H. Stievater, M. W. Mahon, M. W. Pruessner, and W. S. Rabinovich, “Long-Wave Infrared Germanium-on-Silicon Waveguides Beyond 10 µm,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper SF3J.8.

Lai, H.

S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.

Lalane, P.

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

Lee, M. L.

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

Lepage, G.

Lewis, L.

Li, C.

S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.

Littlejohns, C. G.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium Mid-Infrared Photonic Devices,” J. Lightwave Technol. 35(4), 624–630 (2017).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.

Lo Monaco, M.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

Lu, W.

S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.

Maekura, T.

D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
[Crossref]

Magnusson, R.

Mahon, M. W.

D. A. Kozak, T. H. Stievater, M. W. Mahon, M. W. Pruessner, and W. S. Rabinovich, “Long-Wave Infrared Germanium-on-Silicon Waveguides Beyond 10 µm,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper SF3J.8.

Maragliano, C.

Mashanovich, G. Z.

McMarr, P. J.

J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
[Crossref]

Messier, R.

L. J. Pilione, K. Vedam, J. E. Yehoda, and R. Messier, “Thickness dependence of optical gap and void fraction for sputtered amorphous germanium,” Phys. Rev. B 35(17), 9368–9371 (1987).
[Crossref]

J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
[Crossref]

Mitchell, C. J.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium Mid-Infrared Photonic Devices,” J. Lightwave Technol. 35(4), 624–630 (2017).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.

Mittal, V.

Moharam, M. G.

Nakashima, H.

D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
[Crossref]

Nash, L.

Nedeljkovic, M.

Ochalski, T. J.

Osman, A.

Peacock, A. C.

Penades, J. S.

Perot, A.

A. Perot and C. Fabry, “On the application of interference phenomena to the solution of various problems of spectroscopy and metrology,” Astrophys. J. 9, 87 (1899).
[Crossref]

Phenis, A.

J. H. Burnett, S. G. Kaplan, E. Stover, and A. Phenis, “Refractive index measurements of Ge,” Proc. SPIE 9974, Infrared Sensors, Devices, and Applications VI, 99740X (20 September 2016); doi: 10.1117/12.2237978

Pilione, L. J.

L. J. Pilione, K. Vedam, J. E. Yehoda, and R. Messier, “Thickness dependence of optical gap and void fraction for sputtered amorphous germanium,” Phys. Rev. B 35(17), 9368–9371 (1987).
[Crossref]

Pruessner, M. W.

D. A. Kozak, T. H. Stievater, M. W. Mahon, M. W. Pruessner, and W. S. Rabinovich, “Long-Wave Infrared Germanium-on-Silicon Waveguides Beyond 10 µm,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper SF3J.8.

Qu, Z.

Rabinovich, W. S.

D. A. Kozak, T. H. Stievater, M. W. Mahon, M. W. Pruessner, and W. S. Rabinovich, “Long-Wave Infrared Germanium-on-Silicon Waveguides Beyond 10 µm,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper SF3J.8.

Reed, G. T.

F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.

Rodier, J.

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

Roelkens, G.

Rollin, J.

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

Romero-Vivas, J.

Senthil Murugan, G.

Serna, R.

Set, S. Y.

Shahahmadi, S. A.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Shi, C. Y.

G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, “Fabrication of amorphous silicon–germanium thin film solar cell toward broadening long wavelength response,” J. Alloys Compd. 658(15), 543–547 (2016).
[Crossref]

Simon, J.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

Soler Penades, J.

A. Osman, M. Nedeljkovic, J. Soler Penades, Y. Wu, Z. Qu, A. Z. Khokhar, K. Debnath, and G. Z. Mashanovich, “Suspended low-loss germanium waveguides for the longwave infrared,” Opt. Lett. 43(24), 5997–6000 (2018).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.

Sopian, K.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Sorianello, V.

Stankovic, S.

Stievater, T. H.

D. A. Kozak, T. H. Stievater, M. W. Mahon, M. W. Pruessner, and W. S. Rabinovich, “Long-Wave Infrared Germanium-on-Silicon Waveguides Beyond 10 µm,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper SF3J.8.

Stover, E.

J. H. Burnett, S. G. Kaplan, E. Stover, and A. Phenis, “Refractive index measurements of Ge,” Proc. SPIE 9974, Infrared Sensors, Devices, and Applications VI, 99740X (20 September 2016); doi: 10.1117/12.2237978

Swanson, H. E.

H. E. Swanson and R. K. Fuyat, “Standard X-ray Diffraction Patterns,” NBS Circular 539 2, 14–16 (1953).

Takagi, S.

Takenaka, M.

Tsang, H. K.

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref]

T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
[Crossref]

Van Campenhout, J.

Vedam, K.

L. J. Pilione, K. Vedam, J. E. Yehoda, and R. Messier, “Thickness dependence of optical gap and void fraction for sputtered amorphous germanium,” Phys. Rev. B 35(17), 9368–9371 (1987).
[Crossref]

J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
[Crossref]

Verheyen, P.

Wang, D.

D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
[Crossref]

Wang, G. H.

G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, “Fabrication of amorphous silicon–germanium thin film solar cell toward broadening long wavelength response,” J. Alloys Compd. 658(15), 543–547 (2016).
[Crossref]

Wang, S. S.

Wang, W. J.

G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, “Fabrication of amorphous silicon–germanium thin film solar cell toward broadening long wavelength response,” J. Alloys Compd. 658(15), 543–547 (2016).
[Crossref]

Wilkinson, J. S.

Willey, R.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

Wu, Y.

Xiao, T.-H.

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref]

T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
[Crossref]

Yamamoto, K.

D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
[Crossref]

Yehoda, J. E.

L. J. Pilione, K. Vedam, J. E. Yehoda, and R. Messier, “Thickness dependence of optical gap and void fraction for sputtered amorphous germanium,” Phys. Rev. B 35(17), 9368–9371 (1987).
[Crossref]

J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
[Crossref]

Zainon, M.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Zakaria, Z.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Zhao, L.

G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, “Fabrication of amorphous silicon–germanium thin film solar cell toward broadening long wavelength response,” J. Alloys Compd. 658(15), 543–547 (2016).
[Crossref]

Zhao, Z.

T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
[Crossref]

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref]

Zhou, W.

T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator,” Opt. Lett. 43(12), 2885–2888 (2018).
[Crossref]

T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
[Crossref]

Zulkefle, A. A.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto, and H. Nakashima, “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure,” Appl. Phys. Lett. 106(7), 071102 (2015).
[Crossref]

Astrophys. J. (1)

A. Perot and C. Fabry, “On the application of interference phenomena to the solution of various problems of spectroscopy and metrology,” Astrophys. J. 9, 87 (1899).
[Crossref]

Chem. Mater. (1)

H. W. Chiu, C. N. Chervin, and S. M. Kauzlarich, “Phase Changes in Ge Nanoparticles,” Chem. Mater. 17(19), 4858–4864 (2005).
[Crossref]

J. Alloys Compd. (1)

G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, “Fabrication of amorphous silicon–germanium thin film solar cell toward broadening long wavelength response,” J. Alloys Compd. 658(15), 543–547 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol., A (1)

J. R. Blanco, P. J. McMarr, J. E. Yehoda, K. Vedam, and R. Messier, “Density of amorphous germanium films by spectroscopic ellipsometry,” J. Vac. Sci. Technol., A 4(3), 577–582 (1986).
[Crossref]

NBS Circular 539 (1)

H. E. Swanson and R. K. Fuyat, “Standard X-ray Diffraction Patterns,” NBS Circular 539 2, 14–16 (1953).

Opt. Eng. (1)

M. L. Lee, J. Rodier, P. Lalane, P. Gallais, C. Germain, and J. Rollin, “Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 µm,” Opt. Eng. 43(11), 2583 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Photonics Res. (1)

T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “High-Q germanium optical nanocavity,” Photonics Res. 6(9), 925–928 (2018).
[Crossref]

Phys. Rev. B (1)

L. J. Pilione, K. Vedam, J. E. Yehoda, and R. Messier, “Thickness dependence of optical gap and void fraction for sputtered amorphous germanium,” Phys. Rev. B 35(17), 9368–9371 (1987).
[Crossref]

Other (6)

D. A. Kozak, T. H. Stievater, M. W. Mahon, M. W. Pruessner, and W. S. Rabinovich, “Long-Wave Infrared Germanium-on-Silicon Waveguides Beyond 10 µm,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper SF3J.8.

F. Y. Gardes, C. G. Littlejohns, J. Soler Penades, C. J. Mitchell, A. Z. Khokar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” presented at the 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, Singapore, 2-4 June 2014.

A. A. Zulkefle, M. Zainon, Z. Zakaria, S. A. Shahahmadi, M. A. M. Bhuiyan, M. M. Alam, K. Sopian, and N. Amin, “Effects of germanium layer on silicon/germanium superlattice solar cells,” presented in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL16-21 June 2013.

J. Simon, L. Escoubas, M. Lo Monaco, R. Willey, Z. Elalamy, S. Enoch, and G. Hugues, “Design and fabrication of infrared anti-reflective Germanium gratings,” in OSA Technical Digest Series (Optical Society of America, 2004), paper WA4.

S. Huang, W. Lu, C. Li, W. Huang, H. Lai, and S. Chen, “Room temperature photoluminescence from tensile-strained germanium-on-insulator fabricated by a Ge condensation technique,” in OSA Technical Digest (online) (Optical Society of America, 2012), paper AF3B.4.

J. H. Burnett, S. G. Kaplan, E. Stover, and A. Phenis, “Refractive index measurements of Ge,” Proc. SPIE 9974, Infrared Sensors, Devices, and Applications VI, 99740X (20 September 2016); doi: 10.1117/12.2237978

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Demonstration of the film-thickness measurement technique. (a) AFM scan of a developed photoresist (PR) grating. The left image is a topological view of the sample. The right image is a profile of the measured section highlighted in red. Red arrows on the profile measure the grating height, blue arrows mark the grating width, and green arrows are used to measure the device period. (b) SEM cross-section that is cross-referenced with the AFM measurement and used to determine the Ge layer thickness. Here, dPR = 1230 nm and dGe = 850 nm. The SEM is taken on a dummy sample fabricated on a Si substrate for easy cleaving. The striations visible in the image are due to the cleaving process.
Fig. 2.
Fig. 2. FTIR configuration.
Fig. 3.
Fig. 3. Fabry-Perot measurements and RI curve fitting for film 1. (a) RI fit map showing the transmission peak locations as a function of index of refraction. Peak locations lie at the center of the bars. (b) FP transmission spectrum of the 850 nm film. The blue curve is measured FTIR transmission data. Redlined segments connect the FP peaks to their location on the fit map. The dashed line is the calculated FP response using the RI fit data. (c) RI data extrapolated from the FP peak locations. Solid line shows intrinsic Ge RI; the sputtered film RI shown with the dashed line is calculated by applying a logarithmic curve fit to the measurement points.
Fig. 4.
Fig. 4. Fabricated guided-mode resonant device with measured and simulated spectrum for the entire mid and long IR range. Inset shows fabricated grating with PR layer unremoved. Grating dimensions are dg = 500 nm, dh = 350 nm, Λ = 3.67 µm, and f = 0.61. Again, the SEM is for a dummy sample.
Fig. 5.
Fig. 5. GMR device with resonant refractive index measuring point. (a) Grating schematic and dimensions. (b) Calculated TE resonance using RI of c-Ge. (c) Transmission map showing the calculated resonant shift with a changing RI of the Ge layer. TE polarization corresponds to the electric-field vector pointing along the grating grooves.
Fig. 6.
Fig. 6. Film 2 measurement results. (a) Fabry-Perot peak location map and logarithmic curve fit. (b) TE measured results (red) and simulated results (black) for the fabricated grating with grating dimensions dg = 330 nm, dh = 490 nm, Λ = 3670 nm, and f = 0.66 and with calculations made using the RI curve fit from FP measurements.
Fig. 7.
Fig. 7. FP curve fitting results for film 3 (2200 nm, square indicators) and film 4 (2250 nm, diamond indicators).
Fig. 8.
Fig. 8. Resonant device results for films 3 and film 4. (a) SEM cross section of the fabricated film 3 device with dimensions dg = 500 nm, dh = 1700 nm, Λ = 3670 nm, f = 0.63. (b) SEM cross section of fabricated film 4 device with remaining PR grating and dimensions dg = 720 nm, dh = 1530 nm, Λ = 3670 nm, f = 0.63. (c) Film 3 TE response. (d) Film 3 TM response. (e) RI values used in film 3 simulations. (f) Film 4 TE response. (g) Film 4 TM response. (h) RI values used in film 4 simulations. Measured data are shown in red, calculated spectra using c-Ge RI are shown in blue, and calculated spectra using logarithmically fit RI data are shown in black.
Fig. 9.
Fig. 9. Film 5 FP measurements and RI curve fitting. (a) SEM cross section of the 3950 nm sputtered film along with a PR grating used to calibrate thickness measurements. (b) FP transmission measurement results. (c) RI curve resulting from matching FP transmission peak locations.
Fig. 10.
Fig. 10. Summary of refractive index curves fit from Fabry-Perot measurements for all five films.
Fig. 11.
Fig. 11. XRD analysis of sputtered films. (a) Film 1. (b) Film 3. (c) Film 5. Red bars indicate regions where the peak return signal is greater than 60 in detector intensity. The highlighted areas show a general broadening of the signal as the film thickness increases. To the right is a zoomed-out view of each spectrum where the broadening is more visually apparent.

Tables (1)

Tables Icon

Table 1. EDS measurement results

Metrics