B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[Crossref]
B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]
L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]
P. Vogt and O. Bierwagen, “Quantitative subcompound-mediated reaction model for the molecular beam epitaxy of III-VI and IV-VI thin films: Applied to Ga2O3, In2O3, and SnO2,” Phys. Rev. Mater. 2(12), 120401 (2018).
[Crossref]
P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]
J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[Crossref]
Y. Duan, “Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions,” Phys. Rev. B 77(4), 045332 (2008).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]
L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]
G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]
G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]
L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B 136(3B), B864–B871 (1964).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
Z. M. Jarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .1. Preparation and Defect Structure,” J. Electrochem. Soc. 123(7), 199C (1976).
[Crossref]
Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]
P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B 136(3B), B864–B871 (1964).
[Crossref]
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]
G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]
G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]
C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]
F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]
L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]
L. G. Liu, “Fluorite Isotype of SnO2 and a New Modification of TiO2 - Implications for Earths Lower Mantle,” Science 199(4327), 422–425 (1978).
[Crossref]
C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
S. H. Wu, Y. T. Li, J. S. Luo, J. Lin, Y. Fan, Z. H. Gan, and X. Y. Liu, “Pr and F co-doped SnO2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation,” Opt. Express 22(4), 4731–4737 (2014).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
Z. M. Jarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .1. Preparation and Defect Structure,” J. Electrochem. Soc. 123(7), 199C (1976).
[Crossref]
Z. M. Zarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .3. Optical-Properties,” J. Electrochem. Soc. 123(10), 333C (1976).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]
P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]
F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]
C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]
P. Vogt and O. Bierwagen, “Quantitative subcompound-mediated reaction model for the molecular beam epitaxy of III-VI and IV-VI thin films: Applied to Ga2O3, In2O3, and SnO2,” Phys. Rev. Mater. 2(12), 120401 (2018).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]
E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]
Z. M. Zarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .3. Optical-Properties,” J. Electrochem. Soc. 123(10), 333C (1976).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]
Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]
H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]
J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]
C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]
Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]
Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]