Abstract

In this study, columbite phase tin oxide film was deposited onto quartz glass using the thermal evaporation method. An ellipsometry experiment was performed at the temperature of 25 °C-600 °C. B-spline with K-K consistence was used to describe the optical constants of SnO2 film to obtain the temperature dependent film thickness and optical constants. Results of X-ray diffraction pattern (XRD) confirmed an irreversible phase transition from columbite to the rutile structure at the temperature range of 100 to 300 °C, which had remarkably reduced the film thickness and resulted in the blue shift of the absorption edge. Besides, the total and partial densities of states (TDOS and PDOS) for both rutile and columbite phase SnO2 were also calculated based on the first-principles in accordance with the density functional theory, so as to clarify the structure properties of these two phases.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of VO2 thin films deposited on different glass substrates

Kai Dai, Jie Lian, Mark J. Miller, JunLan Wang, YuJun Shi, YuXiang Liu, HaoNan Song, and Xiao Wang
Opt. Mater. Express 9(2) 663-672 (2019)

Anisotropic optical properties of a-axis AlN films: a spectroscopic ellipsometry study

Padmalochan Panda, R. Ramaseshan, S. Tripura Sundari, and H. Suematsu
OSA Continuum 1(4) 1241-1250 (2018)

Temperature stability of thin film refractory plasmonic materials

Matthew P. Wells, Ryan Bower, Rebecca Kilmurray, Bin Zou, Andrei P. Mihai, Gomathi Gobalakrichenane, Neil McN. Alford, Rupert F. M. Oulton, Lesley F. Cohen, Stefan A. Maier, Anatoly V. Zayats, and Peter K. Petrov
Opt. Express 26(12) 15726-15744 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
    [Crossref]
  2. Z. M. Zarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .3. Optical-Properties,” J. Electrochem. Soc. 123(10), 333C (1976).
    [Crossref]
  3. Z. M. Jarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .1. Preparation and Defect Structure,” J. Electrochem. Soc. 123(7), 199C (1976).
    [Crossref]
  4. P. Vogt and O. Bierwagen, “Quantitative subcompound-mediated reaction model for the molecular beam epitaxy of III-VI and IV-VI thin films: Applied to Ga2O3, In2O3, and SnO2,” Phys. Rev. Mater. 2(12), 120401 (2018).
    [Crossref]
  5. S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
    [Crossref]
  6. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
    [Crossref]
  7. F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
    [Crossref]
  8. C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. S. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
    [Crossref]
  9. H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
    [Crossref]
  10. L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
    [Crossref]
  11. C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
    [Crossref]
  12. Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
    [Crossref]
  13. J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
    [Crossref]
  14. S. H. Wu, Y. T. Li, J. S. Luo, J. Lin, Y. Fan, Z. H. Gan, and X. Y. Liu, “Pr and F co-doped SnO2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation,” Opt. Express 22(4), 4731–4737 (2014).
    [Crossref]
  15. H. Zhao, T. Y. Xue, L. Li, and J. W. Zhang, “Ultralow loss visible surface plasmon based waveguides formed in indium-tin-oxide coated Fe-doped LiNbO3 slabs,” Opt. Lett. 41(18), 4150–4153 (2016).
    [Crossref]
  16. S. Lopez, I. del Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37(1), 28–30 (2012).
    [Crossref]
  17. L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express 17(12), 10155–10167 (2009).
    [Crossref]
  18. E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
    [Crossref]
  19. H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
    [Crossref]
  20. Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
    [Crossref]
  21. L. G. Liu, “Fluorite Isotype of SnO2 and a New Modification of TiO2 - Implications for Earths Lower Mantle,” Science 199(4327), 422–425 (1978).
    [Crossref]
  22. C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
    [Crossref]
  23. P. Nestler and C. A. Helm, “Determination of refractive index and layer thickness of nm-thin films via ellipsometry,” Opt. Express 25(22), 27077–27085 (2017).
    [Crossref]
  24. G. H. Hu, H. B. He, A. Sytchkova, J. L. Zhao, J. D. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
    [Crossref]
  25. A. Konova, D. Tonova, and S. Arbov, “Determination of the Optical-Constants of Substrates by Angle-of-Incidence Derivative Ellipsometry in the Presence of Unknown Surface Overlayers,” Opt. Lett. 18(11), 918–920 (1993).
    [Crossref]
  26. J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
    [Crossref]
  27. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B 136(3B), B864–B871 (1964).
    [Crossref]
  28. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
    [Crossref]
  29. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref]
  30. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [Crossref]
  31. B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
    [Crossref]
  32. G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
    [Crossref]
  33. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
    [Crossref]
  34. Y. Duan, “Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions,” Phys. Rev. B 77(4), 045332 (2008).
    [Crossref]
  35. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
    [Crossref]
  36. L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
    [Crossref]
  37. P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
    [Crossref]

2018 (9)

P. Vogt and O. Bierwagen, “Quantitative subcompound-mediated reaction model for the molecular beam epitaxy of III-VI and IV-VI thin films: Applied to Ga2O3, In2O3, and SnO2,” Phys. Rev. Mater. 2(12), 120401 (2018).
[Crossref]

F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]

2017 (3)

2016 (1)

2014 (2)

2012 (1)

2011 (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]

2010 (2)

J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]

P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]

2009 (1)

2008 (1)

Y. Duan, “Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions,” Phys. Rev. B 77(4), 045332 (2008).
[Crossref]

2007 (1)

L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]

2005 (1)

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[Crossref]

2003 (2)

S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

2001 (1)

B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

1997 (1)

C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]

1996 (3)

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

1993 (1)

1978 (1)

L. G. Liu, “Fluorite Isotype of SnO2 and a New Modification of TiO2 - Implications for Earths Lower Mantle,” Science 199(4327), 422–425 (1978).
[Crossref]

1976 (2)

Z. M. Zarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .3. Optical-Properties,” J. Electrochem. Soc. 123(10), 333C (1976).
[Crossref]

Z. M. Jarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .1. Preparation and Defect Structure,” J. Electrochem. Soc. 123(7), 199C (1976).
[Crossref]

1965 (1)

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

1964 (1)

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B 136(3B), B864–B871 (1964).
[Crossref]

Adolph, B.

B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]

Ahmed, T.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Alves, H. W. L.

P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]

Anaraki, E. H.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Andres, J.

L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]

Arbov, S.

Arregui, F. J.

Bae, S.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Bahubalindruni, P.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Barquinha, P.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Batzill, M.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[Crossref]

Bechstedt, F.

B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]

Beltran, A.

L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]

Bierwagen, O.

P. Vogt and O. Bierwagen, “Quantitative subcompound-mediated reaction model for the molecular beam epitaxy of III-VI and IV-VI thin films: Applied to Ga2O3, In2O3, and SnO2,” Phys. Rev. Mater. 2(12), 120401 (2018).
[Crossref]

Borges, P. D.

P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]

Brown, T. M.

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Calado, V. E.

J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]

Chen, P. H.

Chen, Z. Z.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Correa-Baena, J. P.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

da Silva, E. F.

P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]

del Villar, I.

Deuermeier, J.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Di Carlo, A.

Diebold, U.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[Crossref]

Dominici, L.

Duan, Y.

Y. Duan, “Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions,” Phys. Rev. B 77(4), 045332 (2008).
[Crossref]

Edvinsson, T.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Fan, Y.

Fang, G. J.

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Fernandes, C.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Fortunato, E.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Fu, J. J.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Furthmuller, J.

B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

Gan, Z. H.

Gracia, L.

L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]

Gratzel, M.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Grilli, M.

Guo, F. W.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Guo, Y. X.

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

Hagfeldt, A.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]

Han, S.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

He, H. B.

Helm, C. A.

Hernaez, M.

Hohenberg, P.

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B 136(3B), B864–B871 (1964).
[Crossref]

Hu, G. H.

Hwang, D.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Jang, J.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Jarzebski, Z. M.

Z. M. Jarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .1. Preparation and Defect Structure,” J. Electrochem. Soc. 123(7), 199C (1976).
[Crossref]

Jiang, Q.

Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]

Jin, W.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Kermanpur, A.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Kim, S. K.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Kim, Y. H.

S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]

Kohn, W.

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B 136(3B), B864–B871 (1964).
[Crossref]

Konova, A.

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Lai, J. K. L.

C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]

Lee, J.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Lee, J. H.

S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]

Lee, J. W.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Lee, K.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Lee, S. C.

S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]

Lei, B.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Lei, M.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Li, C.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Li, L.

Li, Q.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Li, Y. T.

Liang, Y. Q.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Lin, G. M.

C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]

Lin, J.

Liu, F. F.

F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]

Liu, H. R.

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

Liu, L. G.

L. G. Liu, “Fluorite Isotype of SnO2 and a New Modification of TiO2 - Implications for Earths Lower Mantle,” Science 199(4327), 422–425 (1978).
[Crossref]

Liu, W. H.

C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]

Liu, X. L.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Liu, X. Y.

Liu, Z. Q.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Long, H.

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Lopez, S.

Lu, G.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Luo, J. S.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

S. H. Wu, Y. T. Li, J. S. Luo, J. Lin, Y. Fan, Z. H. Gan, and X. Y. Liu, “Pr and F co-doped SnO2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation,” Opt. Express 22(4), 4731–4737 (2014).
[Crossref]

Ma, Z. B.

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Martins, R.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Marton, J. P.

Z. M. Jarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .1. Preparation and Defect Structure,” J. Electrochem. Soc. 123(7), 199C (1976).
[Crossref]

Z. M. Zarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .3. Optical-Properties,” J. Electrochem. Soc. 123(10), 333C (1976).
[Crossref]

Matias, I. R.

Mayer, M. T.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Michelotti, F.

Nestler, P.

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]

Oh, T. S.

S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]

Pan, C. L.

Pan, R. P.

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Piegari, A.

Qin, P. L.

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

Reale, A.

Ryu, J.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Santa, A.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Santos, A.

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Scolfaro, L. M. R.

P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]

Seo, J. Y.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Sham, L. J.

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Shan, B.

F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]

Shao, J. D.

Shek, C. H.

C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]

Shen, B.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]

Steier, L.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Sun, S. H.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Sytchkova, A.

Tang, B. T.

F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]

Tang, T.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Tang, T. T.

Tao, H.

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Tonova, D.

Tress, W. R.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Turren-Cruz, S. H.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

van de Sanden, M. C. M.

J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]

Vogt, P.

P. Vogt and O. Bierwagen, “Quantitative subcompound-mediated reaction model for the molecular beam epitaxy of III-VI and IV-VI thin films: Applied to Ga2O3, In2O3, and SnO2,” Phys. Rev. Mater. 2(12), 120401 (2018).
[Crossref]

Wang, H. N.

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Wang, T. Y.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Wang, X.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Weber, J. W.

J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]

Wei, J.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Wen, J.

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

Wu, L. H.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Wu, S. H.

Xi, Z.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Xiong, L. B.

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

Xu, D. S.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Xu, K.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Xue, T. Y.

Yang, C. S.

Yang, G.

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Yeom, H. I.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

You, J. B.

Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]

Yu, H.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Yu, P. S.

Yun, J.

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Zakeeruddin, S. M.

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Zamarreno, C. R.

Zarzebski, Z. M.

Z. M. Zarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .3. Optical-Properties,” J. Electrochem. Soc. 123(10), 333C (1976).
[Crossref]

Zhang, D. H.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Zhang, J. W.

Zhang, S. F.

F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]

Zhang, X. W.

Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]

Zhao, H.

Zhao, H. Y.

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Zhao, J. L.

Zhao, Y. C.

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Zheng, Y. F.

C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]

Zhou, C. W.

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

Zhu, J. J.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

Zhu, W. L.

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

ACS Energy Lett. (1)

E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Y. Seo, J. S. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Gratzel, A. Hagfeldt, and J. P. Correa-Baena, “Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells,” ACS Energy Lett. 3(4), 773–778 (2018).
[Crossref]

Adv. Electron. Mater. (1)

C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, “A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors,” Adv. Electron. Mater. 4(7), 1800032 (2018).
[Crossref]

Adv. Funct. Mater. (1)

L. B. Xiong, Y. X. Guo, J. Wen, H. R. Liu, G. Yang, P. L. Qin, and G. J. Fang, “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater. 28(35), 1802757 (2018).
[Crossref]

Adv. Mater. (3)

J. Wei, F. W. Guo, X. Wang, K. Xu, M. Lei, Y. Q. Liang, Y. C. Zhao, and D. S. Xu, “SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability,” Adv. Mater. 30(52), 1805153 (2018).
[Crossref]

Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. 15(20), 1754–1757 (2003).
[Crossref]

H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, S. K. Kim, and J. Jang, “Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics,” Adv. Mater. 30(10), 1704825 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010).
[Crossref]

Appl. Surf. Sci. (1)

H. Tao, Z. B. Ma, G. Yang, H. N. Wang, H. Long, H. Y. Zhao, P. L. Qin, and G. J. Fang, “Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells,” Appl. Surf. Sci. 434, 1336–1343 (2018).
[Crossref]

Comput. Mater. Sci. (1)

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

J. Am. Chem. Soc. (1)

Q. Li, J. J. Fu, W. L. Zhu, Z. Z. Chen, B. Shen, L. H. Wu, Z. Xi, T. Y. Wang, G. Lu, J. J. Zhu, and S. H. Sun, “Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure,” J. Am. Chem. Soc. 139(12), 4290–4293 (2017).
[Crossref]

J. Electrochem. Soc. (2)

Z. M. Zarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .3. Optical-Properties,” J. Electrochem. Soc. 123(10), 333C (1976).
[Crossref]

Z. M. Jarzebski and J. P. Marton, “Physical-Properties of SnO2 Materials .1. Preparation and Defect Structure,” J. Electrochem. Soc. 123(7), 199C (1976).
[Crossref]

J. Phys. Chem. B (1)

L. Gracia, A. Beltran, and J. Andres, “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study,” J. Phys. Chem. B 111(23), 6479–6485 (2007).
[Crossref]

J. Phys. Chem. Solids (1)

C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng, and W. H. Liu, “Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin,” J. Phys. Chem. Solids 58(1), 13–17 (1997).
[Crossref]

Langmuir (1)

F. F. Liu, B. Shan, S. F. Zhang, and B. T. Tang, “SnO2 Inverse Opal Composite Film with Low-Angle-Dependent Structural Color and Enhanced Mechanical Strength,” Langmuir 34(13), 3918–3924 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. (1)

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Phys. Rev. B (5)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

B. Adolph, J. Furthmuller, and F. Bechstedt, “Optical properties of semiconductors using projector-augmented waves,” Phys. Rev. B 63(12), 125108 (2001).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

Y. Duan, “Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions,” Phys. Rev. B 77(4), 045332 (2008).
[Crossref]

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B 136(3B), B864–B871 (1964).
[Crossref]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Phys. Rev. Mater. (1)

P. Vogt and O. Bierwagen, “Quantitative subcompound-mediated reaction model for the molecular beam epitaxy of III-VI and IV-VI thin films: Applied to Ga2O3, In2O3, and SnO2,” Phys. Rev. Mater. 2(12), 120401 (2018).
[Crossref]

Prog. Surf. Sci. (1)

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[Crossref]

Science (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref]

L. G. Liu, “Fluorite Isotype of SnO2 and a New Modification of TiO2 - Implications for Earths Lower Mantle,” Science 199(4327), 422–425 (1978).
[Crossref]

Small (1)

Q. Jiang, X. W. Zhang, and J. B. You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells,” Small 14(31), 1801154 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, “Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system,” Sol. Energy Mater. Sol. Cells 75(3-4), 481–487 (2003).
[Crossref]

Theor. Chem. Acc. (1)

P. D. Borges, L. M. R. Scolfaro, H. W. L. Alves, and E. F. da Silva, “DFT study of the electronic, vibrational, and optical properties of SnO2,” Theor. Chem. Acc. 126(1-2), 39–44 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Temperature dependent SnO2 film thickness.
Fig. 2.
Fig. 2. X-ray diffraction pattern of SnO2 thin film before and after annealing treatment.
Fig. 3.
Fig. 3. AFM images of SnO2 films (a) before and (b) after annealing treatment.
Fig. 4.
Fig. 4. Refractive index (a) and extinction coefficient (b) of SnO2 film at different temperature.
Fig. 5.
Fig. 5. ${({\alpha h\nu } )^2}$ as a function of photon energy at different temperature.
Fig. 6.
Fig. 6. Crystal structure of (a)rutile (b) columbite SnO2 thin film.
Fig. 7.
Fig. 7. Total and partial densities of states (TDOS, PDOS) for rutile and columbite phase SnO2.
Fig. 8.
Fig. 8. Band structure along a selected path of the Brillouin zone of two phases SnO2.

Tables (1)

Tables Icon

Table 1. Lattice constants of the optimized structure for rutile and columbite phase SnO2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=4πkλ

Metrics