Abstract

In this manuscript, photo-sensitive polysulfone thin layers, CMPSF200-HCx thin layers, are utilized to vertically align liquid crystals (LC) accompanied with linearly-polarized UV light (LPUV) exposure. CMPSF200-HCx thin layers are highly transparent and the optical performances of CMPSF200-HCx thin layers are little alternated after LPUV exposing. Vertical alignment of LC between CMPSF200-HC70 thin layers is due to the surface energy alternation generated from [2 + 2] cycloaddition between >C=C< unites, which occurs under LPUV exposing. LC vertically aligned between CMPSF200-HC70 thin layers could be electrically driven to switch at 3.45V, and the total response of LC has been evaluated as 27.941ms. Highly transparent and photosensitive CMPSF200-HC70 thin layers are a competitive candidate in photo-aligning LC.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual wavelength in situ photoalignment for stable planar alignment of nematic liquid crystals

Vineet Kumar, Aboozar Nasrollahi, Vijay Kumar Baliyan, Heung-Shik Park, Myong-Hoon Lee, and Shin-Woong Kang
Opt. Mater. Express 8(8) 2366-2377 (2018)

Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment

Yang Liu, Ju Hwan Lee, and Dae-Shik Seo
Opt. Express 24(15) 17424-17432 (2016)

Topographically induced homeotropic alignment of liquid crystals on self-assembled opal crystals

Pankaj Kumar, Su Yeon Oh, Vijay K. Baliyan, Sudarshan Kundu, Seung Hee Lee, and Shin-Woong Kang
Opt. Express 26(7) 8385-8396 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Scheffer and J. Nehring, “A new, highly multiplexable liquid crystal display,” Appl. Phys. Lett. 45(10), 1021–1023 (1984).
    [Crossref]
  2. H. Chen, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Low-voltage blue-phase liquid crystal display with diamond-shape electrodes,” Liq. Cryst. 44(7), 1124–1130 (2017).
    [Crossref]
  3. Y. Liu, J. Sun, H. Liu, and D.-S. Seo, “Super fast switching and low operating of liquid crystals sandwiched between ion beam-spurted ITO thin layers,” Liq. Cryst. 46(7), 1052–1059 (2019).
    [Crossref]
  4. F. Wang, Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, “High-sensitivity Fabry–Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect,” Opt. Lett. 43(21), 5355–5358 (2018).
    [Crossref]
  5. S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
    [Crossref]
  6. L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  7. A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971 (2015).
    [Crossref]
  8. H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254 (2018).
    [Crossref]
  9. A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
    [Crossref]
  10. J. Chou, L. Parameswaran, B. Kimball, and M. Rothschild, “Electrically switchable diffractive waveplates with metasurface aligned liquid crystals,” Opt. Express 24(21), 24265–24273 (2016).
    [Crossref]
  11. Y. Liu and D.-S. Seo, “Alignment of liquid crystals on ion-beam-spurted graphene-oxide thin layers,” J. Soc. Inf. Disp. 25(2), 83–89 (2017).
    [Crossref]
  12. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [Crossref]
  13. Y. Liu, J. H. Lee, D.-S. Seo, and X. Li, “Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage,” Appl. Phys. Lett. 109(10), 101901 (2016).
    [Crossref]
  14. Y. Liu, J. H. Lee, and D.-S. Seo, “Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment,” Opt. Express 24(15), 17424–17432 (2016).
    [Crossref]
  15. J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
    [Crossref]
  16. Y. Liu, H.-G. Park, J. H. Lee, D.-S. Seo, E.-M. Kim, and G.-S. Heo, “Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers,” Opt. Express 23(26), 34071–34081 (2015).
    [Crossref]
  17. A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
    [Crossref]
  18. P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
    [Crossref]
  19. P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
    [Crossref]
  20. J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
    [Crossref]
  21. N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
    [Crossref]
  22. Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
    [Crossref]
  23. T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
    [Crossref]
  24. S.-W. Oh, J.-H. Park, and T.-H. Yoon, “Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer,” Opt. Express 23(2), 1044–1051 (2015).
    [Crossref]
  25. I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
    [Crossref]
  26. Y.-C. Hsiao, K.-C. Huang, and W. Lee, “Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant,” Opt. Express 25(3), 2687–2693 (2017).
    [Crossref]
  27. Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-g. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26(2), 1422–1432 (2018).
    [Crossref]
  28. K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
    [Crossref]
  29. O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
    [Crossref]
  30. M. Obi, S. Morino, and K. Ichimura, “Factors affecting photoalignment of liquid crystals induced by polymethacrylates with coumarin side chains,” Chem. Mater. 11(3), 656–664 (1999).
    [Crossref]
  31. H. Kang, Y.-S. Choi, D. Kang, and J.-C. Lee, “Photoalignment behaviour on polystyrene films containing chalcone moieties,” Liq. Cryst. 42(2), 189–197 (2015).
    [Crossref]
  32. B. Sapich, J. Stumpe, I. Gerus, and O. Yaroshchuk, “Photoinduced anisotropy and LC photoalignment properties of Polyvinylcinnamate films,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 352(1), 9–18 (2000).
    [Crossref]
  33. M. Mizusaki, “UV-induced vertical alignment liquid crystal cell with two species of monomers having vertical-alignment-induced side-chain group and phenanthrene group,” Liq. Cryst. 45(5), 649–655 (2018).
    [Crossref]
  34. H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
    [Crossref]

2019 (2)

Y. Liu, J. Sun, H. Liu, and D.-S. Seo, “Super fast switching and low operating of liquid crystals sandwiched between ion beam-spurted ITO thin layers,” Liq. Cryst. 46(7), 1052–1059 (2019).
[Crossref]

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

2018 (8)

A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

F. Wang, Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, “High-sensitivity Fabry–Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect,” Opt. Lett. 43(21), 5355–5358 (2018).
[Crossref]

H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254 (2018).
[Crossref]

A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-g. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26(2), 1422–1432 (2018).
[Crossref]

M. Mizusaki, “UV-induced vertical alignment liquid crystal cell with two species of monomers having vertical-alignment-induced side-chain group and phenanthrene group,” Liq. Cryst. 45(5), 649–655 (2018).
[Crossref]

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

2017 (3)

Y.-C. Hsiao, K.-C. Huang, and W. Lee, “Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant,” Opt. Express 25(3), 2687–2693 (2017).
[Crossref]

H. Chen, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Low-voltage blue-phase liquid crystal display with diamond-shape electrodes,” Liq. Cryst. 44(7), 1124–1130 (2017).
[Crossref]

Y. Liu and D.-S. Seo, “Alignment of liquid crystals on ion-beam-spurted graphene-oxide thin layers,” J. Soc. Inf. Disp. 25(2), 83–89 (2017).
[Crossref]

2016 (3)

2015 (8)

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971 (2015).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, D.-S. Seo, E.-M. Kim, and G.-S. Heo, “Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers,” Opt. Express 23(26), 34071–34081 (2015).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

S.-W. Oh, J.-H. Park, and T.-H. Yoon, “Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer,” Opt. Express 23(2), 1044–1051 (2015).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref]

H. Kang, Y.-S. Choi, D. Kang, and J.-C. Lee, “Photoalignment behaviour on polystyrene films containing chalcone moieties,” Liq. Cryst. 42(2), 189–197 (2015).
[Crossref]

2012 (1)

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

2001 (1)

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

2000 (2)

B. Sapich, J. Stumpe, I. Gerus, and O. Yaroshchuk, “Photoinduced anisotropy and LC photoalignment properties of Polyvinylcinnamate films,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 352(1), 9–18 (2000).
[Crossref]

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref]

1999 (1)

M. Obi, S. Morino, and K. Ichimura, “Factors affecting photoalignment of liquid crystals induced by polymethacrylates with coumarin side chains,” Chem. Mater. 11(3), 656–664 (1999).
[Crossref]

1998 (1)

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

1997 (1)

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
[Crossref]

1991 (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

1989 (1)

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

1984 (1)

T. J. Scheffer and J. Nehring, “A new, highly multiplexable liquid crystal display,” Appl. Phys. Lett. 45(10), 1021–1023 (1984).
[Crossref]

Abdulhalim, I.

A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
[Crossref]

Aoki, K.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

Beeckman, J.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref]

Bisoyi, H. K.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Bobrovsky, A.

A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

Callegari, A. C.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Cerkauskaite, A.

A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
[Crossref]

Chaudhari, P.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Chen, H.

H. Chen, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Low-voltage blue-phase liquid crystal display with diamond-shape electrodes,” Liq. Cryst. 44(7), 1124–1130 (2017).
[Crossref]

Chen, J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Chen, L.-J.

Chen, P.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Choi, Y.-S.

H. Kang, Y.-S. Choi, D. Kang, and J.-C. Lee, “Photoalignment behaviour on polystyrene films containing chalcone moieties,” Liq. Cryst. 42(2), 189–197 (2015).
[Crossref]

Chou, J.

Chu, F.

Cossy-Favre, A.

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

Díaz, J.

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

Dou, H.

Doyle, J. P.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Drevinskas, R.

A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
[Crossref]

Duan, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Gao, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Ge, S.-J.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Ge, Y.-H.

Gerus, I.

B. Sapich, J. Stumpe, I. Gerus, and O. Yaroshchuk, “Photoinduced anisotropy and LC photoalignment properties of Polyvinylcinnamate films,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 352(1), 9–18 (2000).
[Crossref]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Guo, Y.-Q.

Han, J.-M.

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

Hassanfiroozi, A.

Heo, G.-S.

Hsiao, Y.-C.

Hu, W.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Huang, K.-C.

Huang, Y.-P.

Ichimura, K.

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref]

M. Obi, S. Morino, and K. Ichimura, “Factors affecting photoalignment of liquid crystals induced by polymethacrylates with coumarin side chains,” Chem. Mater. 11(3), 656–664 (1999).
[Crossref]

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

Jang, S. B.

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

Javidi, B.

Jeong, H.-C.

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

Jiang, R.-g.

Jin, B.-B.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Jung, Y. H.

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

Kang, D.

H. Kang, Y.-S. Choi, D. Kang, and J.-C. Lee, “Photoalignment behaviour on polystyrene films containing chalcone moieties,” Liq. Cryst. 42(2), 189–197 (2015).
[Crossref]

Kang, H.

H. Kang, Y.-S. Choi, D. Kang, and J.-C. Lee, “Photoalignment behaviour on polystyrene films containing chalcone moieties,” Liq. Cryst. 42(2), 189–197 (2015).
[Crossref]

Kawanishi, Y.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

Kawatsuki, N.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
[Crossref]

Kazansky, P. G.

A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
[Crossref]

Kim, B.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

Kim, E.-M.

Kim, S. K.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

Kim, S.-H.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

Kim, Y. H.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

Kimball, B.

Lacey, J. A.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Lan, Y.-F.

H. Chen, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Low-voltage blue-phase liquid crystal display with diamond-shape electrodes,” Liq. Cryst. 44(7), 1124–1130 (2017).
[Crossref]

Lee, J. H.

Y. Liu, J. H. Lee, D.-S. Seo, and X. Li, “Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage,” Appl. Phys. Lett. 109(10), 101901 (2016).
[Crossref]

Y. Liu, J. H. Lee, and D.-S. Seo, “Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment,” Opt. Express 24(15), 17424–17432 (2016).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, D.-S. Seo, E.-M. Kim, and G.-S. Heo, “Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers,” Opt. Express 23(26), 34071–34081 (2015).
[Crossref]

Lee, J.-C.

H. Kang, Y.-S. Choi, D. Kang, and J.-C. Lee, “Photoalignment behaviour on polystyrene films containing chalcone moieties,” Liq. Cryst. 42(2), 189–197 (2015).
[Crossref]

Lee, S. S.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

Lee, W.

Li, Q.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Li, S.-S.

Li, T.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Li, X.

Y. Liu, J. H. Lee, D.-S. Seo, and X. Li, “Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage,” Appl. Phys. Lett. 109(10), 101901 (2016).
[Crossref]

Liang, L.-J.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lien, S. A.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Lin, X.-W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liu, H.

Y. Liu, J. Sun, H. Liu, and D.-S. Seo, “Super fast switching and low operating of liquid crystals sandwiched between ion beam-spurted ITO thin layers,” Liq. Cryst. 46(7), 1052–1059 (2019).
[Crossref]

Liu, Y.

Y. Liu, J. Sun, H. Liu, and D.-S. Seo, “Super fast switching and low operating of liquid crystals sandwiched between ion beam-spurted ITO thin layers,” Liq. Cryst. 46(7), 1052–1059 (2019).
[Crossref]

F. Wang, Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, “High-sensitivity Fabry–Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect,” Opt. Lett. 43(21), 5355–5358 (2018).
[Crossref]

Y. Liu and D.-S. Seo, “Alignment of liquid crystals on ion-beam-spurted graphene-oxide thin layers,” J. Soc. Inf. Disp. 25(2), 83–89 (2017).
[Crossref]

Y. Liu, J. H. Lee, D.-S. Seo, and X. Li, “Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage,” Appl. Phys. Lett. 109(10), 101901 (2016).
[Crossref]

Y. Liu, J. H. Lee, and D.-S. Seo, “Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment,” Opt. Express 24(15), 17424–17432 (2016).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, D.-S. Seo, E.-M. Kim, and G.-S. Heo, “Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers,” Opt. Express 23(26), 34071–34081 (2015).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

Lu, Y.

Lu, Y.-N.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y.-Q.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lüning, J.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Ma, J.

Ma, L.-L.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Mizusaki, M.

M. Mizusaki, “UV-induced vertical alignment liquid crystal cell with two species of monomers having vertical-alignment-induced side-chain group and phenanthrene group,” Liq. Cryst. 45(5), 649–655 (2018).
[Crossref]

Momoi, Y.

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

Morino, S.

M. Obi, S. Morino, and K. Ichimura, “Factors affecting photoalignment of liquid crystals induced by polymethacrylates with coumarin side chains,” Chem. Mater. 11(3), 656–664 (1999).
[Crossref]

Mun, H. Y.

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

Nagata, T.

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

Nehring, J.

T. J. Scheffer and J. Nehring, “A new, highly multiplexable liquid crystal display,” Appl. Phys. Lett. 45(10), 1021–1023 (1984).
[Crossref]

Neyts, K.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref]

Nys, I.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref]

Obi, M.

M. Obi, S. Morino, and K. Ichimura, “Factors affecting photoalignment of liquid crystals induced by polymethacrylates with coumarin side chains,” Chem. Mater. 11(3), 656–664 (1999).
[Crossref]

Odahara, S.

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

Oh, B.-Y.

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

Oh, S.-W.

Ono, H.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
[Crossref]

Parameswaran, L.

Park, H.-G.

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, D.-S. Seo, E.-M. Kim, and G.-S. Heo, “Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers,” Opt. Express 23(26), 34071–34081 (2015).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

Park, J.-H.

Purushothaman, S.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Qian, H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Reznikov, Y.

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

Rothschild, M.

Ryabchun, A.

A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

Samant, M. G.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

Sangen, O.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
[Crossref]

Sapich, B.

B. Sapich, J. Stumpe, I. Gerus, and O. Yaroshchuk, “Photoinduced anisotropy and LC photoalignment properties of Polyvinylcinnamate films,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 352(1), 9–18 (2000).
[Crossref]

Scheffer, T. J.

T. J. Scheffer and J. Nehring, “A new, highly multiplexable liquid crystal display,” Appl. Phys. Lett. 45(10), 1021–1023 (1984).
[Crossref]

Seki, T.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

Seo, D.-S.

Y. Liu, J. Sun, H. Liu, and D.-S. Seo, “Super fast switching and low operating of liquid crystals sandwiched between ion beam-spurted ITO thin layers,” Liq. Cryst. 46(7), 1052–1059 (2019).
[Crossref]

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

Y. Liu and D.-S. Seo, “Alignment of liquid crystals on ion-beam-spurted graphene-oxide thin layers,” J. Soc. Inf. Disp. 25(2), 83–89 (2017).
[Crossref]

Y. Liu, J. H. Lee, D.-S. Seo, and X. Li, “Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage,” Appl. Phys. Lett. 109(10), 101901 (2016).
[Crossref]

Y. Liu, J. H. Lee, and D.-S. Seo, “Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment,” Opt. Express 24(15), 17424–17432 (2016).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, D.-S. Seo, E.-M. Kim, and G.-S. Heo, “Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers,” Opt. Express 23(26), 34071–34081 (2015).
[Crossref]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Shao, G.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Shen, Y.

Shen, Z.-X.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Shieh, H.-P. D.

Solodar, A.

A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
[Crossref]

Speidell, J. L.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Stöhr, J.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

Stumpe, J.

B. Sapich, J. Stumpe, I. Gerus, and O. Yaroshchuk, “Photoinduced anisotropy and LC photoalignment properties of Polyvinylcinnamate films,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 352(1), 9–18 (2000).
[Crossref]

Sun, J.

Y. Liu, J. Sun, H. Liu, and D.-S. Seo, “Super fast switching and low operating of liquid crystals sandwiched between ion beam-spurted ITO thin layers,” Liq. Cryst. 46(7), 1052–1059 (2019).
[Crossref]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Sun, W.

Sun, Y.-B.

Suzuki, Y.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Takatsuka, H.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
[Crossref]

Tamaki, T.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

Tang, M.-J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Tian, L.-L.

Tsai, C.-Y.

H. Chen, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Low-voltage blue-phase liquid crystal display with diamond-shape electrodes,” Liq. Cryst. 44(7), 1124–1130 (2017).
[Crossref]

Wang, F.

Wang, L.

F. Wang, Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, “High-sensitivity Fabry–Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect,” Opt. Lett. 43(21), 5355–5358 (2018).
[Crossref]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wang, Q.-H.

Wang, X.-Z.

Won, J. C.

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

Wu, P.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wu, S.-B.

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Wu, S.-T.

H. Chen, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Low-voltage blue-phase liquid crystal display with diamond-shape electrodes,” Liq. Cryst. 44(7), 1124–1130 (2017).
[Crossref]

Xu, R.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Xu, Y.-C.

Yamamoto, T.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
[Crossref]

Yaroshchuk, O.

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

B. Sapich, J. Stumpe, I. Gerus, and O. Yaroshchuk, “Photoinduced anisotropy and LC photoalignment properties of Polyvinylcinnamate films,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 352(1), 9–18 (2000).
[Crossref]

Yoon, T.-H.

Zhang, L.

Zheng, Z.-G.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Zhu, Z.-H.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Adv. Mater. (2)

S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, “Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules,” Adv. Mater. 27(4), 627–633 (2015).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref]

Adv. Opt. Mater. (1)

A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

Appl. Phys. Lett. (3)

T. J. Scheffer and J. Nehring, “A new, highly multiplexable liquid crystal display,” Appl. Phys. Lett. 45(10), 1021–1023 (1984).
[Crossref]

Y. Liu, J. H. Lee, D.-S. Seo, and X. Li, “Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage,” Appl. Phys. Lett. 109(10), 101901 (2016).
[Crossref]

A. Solodar, A. Cerkauskaite, R. Drevinskas, P. G. Kazansky, and I. Abdulhalim, “Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes,” Appl. Phys. Lett. 113(8), 081603 (2018).
[Crossref]

Chem. Mater. (1)

M. Obi, S. Morino, and K. Ichimura, “Factors affecting photoalignment of liquid crystals induced by polymethacrylates with coumarin side chains,” Chem. Mater. 11(3), 656–664 (1999).
[Crossref]

Chem. Rev. (1)

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref]

IEEE Electron Device Lett. (1)

Y. Liu, H.-G. Park, J. H. Lee, S. B. Jang, Y. H. Jung, H.-C. Jeong, and D.-S. Seo, “Homogeneous Liquid Crystal Alignment on Ion Beam-Induced Y2Sn2O7 Layers,” IEEE Electron Device Lett. 36(4), 363–365 (2015).
[Crossref]

J. Mater. Chem. (1)

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem. 22(2), 286–300 (2012).
[Crossref]

J. Soc. Inf. Disp. (1)

Y. Liu and D.-S. Seo, “Alignment of liquid crystals on ion-beam-spurted graphene-oxide thin layers,” J. Soc. Inf. Disp. 25(2), 83–89 (2017).
[Crossref]

Light: Sci. Appl. (1)

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light: Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liq. Cryst. (4)

H. Chen, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Low-voltage blue-phase liquid crystal display with diamond-shape electrodes,” Liq. Cryst. 44(7), 1124–1130 (2017).
[Crossref]

Y. Liu, J. Sun, H. Liu, and D.-S. Seo, “Super fast switching and low operating of liquid crystals sandwiched between ion beam-spurted ITO thin layers,” Liq. Cryst. 46(7), 1052–1059 (2019).
[Crossref]

H. Kang, Y.-S. Choi, D. Kang, and J.-C. Lee, “Photoalignment behaviour on polystyrene films containing chalcone moieties,” Liq. Cryst. 42(2), 189–197 (2015).
[Crossref]

M. Mizusaki, “UV-induced vertical alignment liquid crystal cell with two species of monomers having vertical-alignment-induced side-chain group and phenanthrene group,” Liq. Cryst. 45(5), 649–655 (2018).
[Crossref]

Macromolecules (3)

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical Alignment Regulation of a Nematic Liquid Crystal by Langmuir-Blodgett Layers of Azobenzene Polymers as “Command Surfaces”,” Macromolecules 22(8), 3505–3506 (1989).
[Crossref]

J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces,” Macromolecules 31(6), 1942–1946 (1998).
[Crossref]

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30(21), 6680–6682 (1997).
[Crossref]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (1)

B. Sapich, J. Stumpe, I. Gerus, and O. Yaroshchuk, “Photoinduced anisotropy and LC photoalignment properties of Polyvinylcinnamate films,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 352(1), 9–18 (2000).
[Crossref]

Nat. Commun. (1)

P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
[Crossref]

Nature (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Opt. Express (8)

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971 (2015).
[Crossref]

S.-W. Oh, J.-H. Park, and T.-H. Yoon, “Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer,” Opt. Express 23(2), 1044–1051 (2015).
[Crossref]

Y. Liu, H.-G. Park, J. H. Lee, D.-S. Seo, E.-M. Kim, and G.-S. Heo, “Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers,” Opt. Express 23(26), 34071–34081 (2015).
[Crossref]

Y. Liu, J. H. Lee, and D.-S. Seo, “Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment,” Opt. Express 24(15), 17424–17432 (2016).
[Crossref]

J. Chou, L. Parameswaran, B. Kimball, and M. Rothschild, “Electrically switchable diffractive waveplates with metasurface aligned liquid crystals,” Opt. Express 24(21), 24265–24273 (2016).
[Crossref]

Y.-C. Hsiao, K.-C. Huang, and W. Lee, “Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant,” Opt. Express 25(3), 2687–2693 (2017).
[Crossref]

Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-g. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26(2), 1422–1432 (2018).
[Crossref]

H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254 (2018).
[Crossref]

Opt. Lett. (1)

Science (1)

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref]

Soft Matter (2)

H.-G. Park, H. Y. Mun, H.-C. Jeong, B.-Y. Oh, J.-M. Han, and D.-S. Seo, “Superior electro-optical performance in vertically aligned liquid crystal devices based on aluminum oxide films,” Soft Matter 16(2), 71–76 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) The molecule structure of CMPSF200-HCx and (b) the schematic of cross-link between chalcone side chains.
Fig. 2.
Fig. 2. UV spectrum of (a) CMPSF200-HC30 and (b) CMPSF200-HC70, and the corresponding decay rate of CMPSF200-HC30 and CMPSF200-HC30, respectively.
Fig. 3.
Fig. 3. (a) The captured laser beam images across CMPSF200-HC30 and CMPSF200-HC70 thin layers, (b) the intensities of laser beam across CMPSF200-HC30 and CMPSF200-HC70 thin layers in X and Y directions, and (c) the transmittance alternation of CMPSF200-HC30 and CMPSF200-HC70 thin layers before and after UV exposing.
Fig. 4.
Fig. 4. POM images of LC sandwiched between CMPSF200-HC30 and CMPSF200-HC70 thin layers, respectively.
Fig. 5.
Fig. 5. (a) The contact angles of DI-water droplets and diiodomethane droplets on CMPSF200-HC30 thin layers and CMPSF200-HC70 thin layers, respectively, and (b) the corresponding calculated surface energy.
Fig. 6.
Fig. 6. (a) Voltage-dependent transmittance curves of LC sandwiched between CMPSF200-HC70 thin layers after 1200s LPUV exposing, and the (b) corresponding rising and decaying response time of cell.

Tables (2)

Tables Icon

Table 1. The contact angles of DI-water droplets and diiodomethane droplets on CMPSF200-HC30 thin layers and CMPSF200-HC70 thin layers, respectively, and the corresponding calculated surface energies, polar energies and dispersive energies.

Tables Icon

Table 2. The threshold voltage, rising time and decaying time of cell assembled with rubbed PI alignment layers, LPUV exposed VAPF alignment layers and LPUV exposed CMPSF200-HC70 alignment layers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = ( A 0 A t ) / A t × 100 %

Metrics