Abstract

Vanadium dioxide is a material that undergoes phase changes and switches between metallic and insulating states, thereby producing dramatic changes in optical properties. This transition is a reversible but hysteretic process, which is investigated here as a function of atomic layer deposited film thickness. Increasing the thickness of vanadium dioxide films from 8.6 to 57 nm lead to an increase in hysteresis width. Thicker films develop two different slopes (steep and gradual) when cooling through the metal-insulator transition, where the steep transition matches that of the heating cycle of the transition. This asymmetry in the hysteresis is apparent and similar in both the electrical and optical measurements. Temperature-dependent Raman spectroscopy and temperature-dependent x-ray diffraction confirm the same anomaly suggesting a structural dependence on hysteretic shape. Transmission electron microscopy identifies texturing and faceting in-plane, especially along the surface of these films, and confirms the x-ray diffraction data. Identifying this facet texturing is valuable for film growth as well as for applications, such as logic and memory systems, that utilize the hysteretic nature of vanadium dioxide.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterizing the tunable refractive index of vanadium dioxide

Marc Currie, Michael A. Mastro, and Virginia D. Wheeler
Opt. Mater. Express 7(5) 1697-1707 (2017)

Optical properties of vanadium dioxide and vanadium pentoxide thin films

Elizabeth E. Chain
Appl. Opt. 30(19) 2782-2787 (1991)

Metal-insulator phase transition in Hf-doped VO2(M) thin films: a study on the structural, electrical, optical and infrared radiation properties

Taixing Huang, Tongtong Kang, Yue Li, Jitao Li, Longjiang Deng, and Lei Bi
Opt. Mater. Express 8(8) 2300-2311 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
    [Crossref]
  2. S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
    [Crossref]
  3. M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
    [Crossref]
  4. R. F. Haglund, S. M. Weiss, and K. Appavoo, “Photonic and plasmonic modulators based on optical switching in VO2,” Proc. SPIE 9370, 93701C (2015).
    [Crossref]
  5. J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
    [Crossref]
  6. J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
    [Crossref]
  7. J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
    [Crossref]
  8. F. C. Case, “Modifications in the phase transition properties of predeposited VO2 films,” J. Vac. Sci. Technol., A 2(4), 1509–1512 (1984).
    [Crossref]
  9. D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
    [Crossref]
  10. V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
    [Crossref]
  11. T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
    [Crossref]
  12. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
    [Crossref]
  13. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
    [Crossref]
  14. X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
    [Crossref]
  15. S. Yu, S. Wang, M. Lu, and L. Zuo, “A metal-insulator transition study of VO2 thin films grown on sapphire substrates,” J. Appl. Phys. 122(23), 235102 (2017).
    [Crossref]
  16. G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
    [Crossref]
  17. E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles,” Nano Lett. 9(2), 702–706 (2009).
    [Crossref]
  18. K. Appavoo and R. F. Haglund, “Detecting Nanoscale Size Dependence in VO2 Phase Transition Using a Split-Ring Resonator Metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
    [Crossref]
  19. G. I. Petrov, V. V. Yakovlev, and J. A. Squier, “Nonlinear optical microscopy analysis of ultrafast phase transformation in vanadium dioxide,” Opt. Lett. 27(8), 655–657 (2002).
    [Crossref]
  20. J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadiumdioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
    [Crossref]
  21. A. Hendaoui, N. Émond, M. Chaker, and É Haddad, “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett. 102(6), 061107 (2013).
    [Crossref]
  22. G. Leahu, R. L. Voti, C. Sibilia, and M. Bertolotti, “Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate,” Appl. Phys. Lett. 103(23), 231114 (2013).
    [Crossref]
  23. J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
    [Crossref]
  24. K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
    [Crossref]
  25. X. Wang, Z. Gong, K. Dong, S. Lou, J. Slack, A. Anders, and J. Yao, “Tunable Bragg filters with a phase transition material defect layer,” Opt. Express 24(18), 20365–20372 (2016).
    [Crossref]
  26. J. Narayan and V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” J. Appl. Phys. 100(10), 103524 (2006).
    [Crossref]
  27. H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
    [Crossref]
  28. J. D. Frame, N. G. Green, and X. Fang, “Modified Maxwell Garnett model for hysteresis in phase change materials,” Opt. Mater. Express 8(7), 1988–1996 (2018).
    [Crossref]
  29. P. J. Hood and J. F. DeNatale, “Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films,” J. Appl. Phys. 70(1), 376–381 (1991).
    [Crossref]
  30. L. A. L. de Almeida, G. S. Deep, A. M. Nogueira-Lima, and H. Neff, “Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector,” Opt. Express 41(10), 2582–2589 (2002).
    [Crossref]
  31. L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
    [Crossref]
  32. V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
    [Crossref]
  33. J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance in micro- and nanopolycrystalline VO2 thin films with random resistor networks,” Opt. Eng. 47(3), 033801 (2008).
    [Crossref]
  34. E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Phys. Solid State 52(11), 2426–2433 (2010).
    [Crossref]
  35. M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7(5), 1697–1707 (2017).
    [Crossref]
  36. P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
    [Crossref]
  37. G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid-State Electron. 25(2), 91–94 (1982).
    [Crossref]
  38. H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
    [Crossref]
  39. C. Petit, J.-M. Frigerio, and M. Goldmann, “Hysteresis of the metal-insulator transition of VO2; evidence of the influence of microscopic texturation,” J. Phys.: Condens. Matter 11(16), 3259–3264 (1999).
    [Crossref]
  40. M. E. Uslu, I. B. Misirlioglu, and K. Sendur, “Selective IR response of highly textured phase change VO2 nanostructures obtained via oxidation of electron beam deposited metallic V films,” Opt. Mater. Express 8(8), 2035–2049 (2018).
    [Crossref]

2018 (2)

2017 (4)

M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7(5), 1697–1707 (2017).
[Crossref]

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
[Crossref]

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

S. Yu, S. Wang, M. Lu, and L. Zuo, “A metal-insulator transition study of VO2 thin films grown on sapphire substrates,” J. Appl. Phys. 122(23), 235102 (2017).
[Crossref]

2016 (1)

2015 (1)

R. F. Haglund, S. M. Weiss, and K. Appavoo, “Photonic and plasmonic modulators based on optical switching in VO2,” Proc. SPIE 9370, 93701C (2015).
[Crossref]

2014 (2)

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
[Crossref]

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

2013 (3)

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

A. Hendaoui, N. Émond, M. Chaker, and É Haddad, “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett. 102(6), 061107 (2013).
[Crossref]

G. Leahu, R. L. Voti, C. Sibilia, and M. Bertolotti, “Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate,” Appl. Phys. Lett. 103(23), 231114 (2013).
[Crossref]

2012 (2)

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

2011 (3)

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting Nanoscale Size Dependence in VO2 Phase Transition Using a Split-Ring Resonator Metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref]

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

2010 (1)

E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Phys. Solid State 52(11), 2426–2433 (2010).
[Crossref]

2009 (1)

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles,” Nano Lett. 9(2), 702–706 (2009).
[Crossref]

2008 (1)

J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance in micro- and nanopolycrystalline VO2 thin films with random resistor networks,” Opt. Eng. 47(3), 033801 (2008).
[Crossref]

2006 (2)

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadiumdioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

J. Narayan and V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” J. Appl. Phys. 100(10), 103524 (2006).
[Crossref]

2005 (2)

D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
[Crossref]

V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
[Crossref]

2004 (2)

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

2002 (6)

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. Nogueira-Lima, and H. Neff, “Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector,” Opt. Express 41(10), 2582–2589 (2002).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. A. Squier, “Nonlinear optical microscopy analysis of ultrafast phase transformation in vanadium dioxide,” Opt. Lett. 27(8), 655–657 (2002).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

1999 (1)

C. Petit, J.-M. Frigerio, and M. Goldmann, “Hysteresis of the metal-insulator transition of VO2; evidence of the influence of microscopic texturation,” J. Phys.: Condens. Matter 11(16), 3259–3264 (1999).
[Crossref]

1996 (1)

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
[Crossref]

1991 (1)

P. J. Hood and J. F. DeNatale, “Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films,” J. Appl. Phys. 70(1), 376–381 (1991).
[Crossref]

1987 (1)

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

1984 (1)

F. C. Case, “Modifications in the phase transition properties of predeposited VO2 films,” J. Vac. Sci. Technol., A 2(4), 1509–1512 (1984).
[Crossref]

1982 (1)

G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid-State Electron. 25(2), 91–94 (1982).
[Crossref]

1971 (1)

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

Adelmann, C.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Ahn, J. S.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
[Crossref]

Anders, A.

Appavoo, K.

R. F. Haglund, S. M. Weiss, and K. Appavoo, “Photonic and plasmonic modulators based on optical switching in VO2,” Proc. SPIE 9370, 93701C (2015).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting Nanoscale Size Dependence in VO2 Phase Transition Using a Split-Ring Resonator Metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref]

Babulanam, S. M.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Benkahoul, M.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Bertolotti, M.

G. Leahu, R. L. Voti, C. Sibilia, and M. Bertolotti, “Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate,” Appl. Phys. Lett. 103(23), 231114 (2013).
[Crossref]

Betz, M.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
[Crossref]

Bhosle, V. M.

J. Narayan and V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” J. Appl. Phys. 100(10), 103524 (2006).
[Crossref]

Boatner, L. A.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Brassard, D.

D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
[Crossref]

Case, F. C.

F. C. Case, “Modifications in the phase transition properties of predeposited VO2 films,” J. Vac. Sci. Technol., A 2(4), 1509–1512 (1984).
[Crossref]

Chaker, M.

A. Hendaoui, N. Émond, M. Chaker, and É Haddad, “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett. 102(6), 061107 (2013).
[Crossref]

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Charipar, N.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Chen, J.

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

Cheng, H.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Choi, H. S.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
[Crossref]

Cobden, D. H.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

Conard, T.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Coy, J. M.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

Currie, M.

Dai, J.

J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance in micro- and nanopolycrystalline VO2 thin films with random resistor networks,” Opt. Eng. 47(3), 033801 (2008).
[Crossref]

Das, M. B.

G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid-State Electron. 25(2), 91–94 (1982).
[Crossref]

de Almeida, L. A. L.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. Nogueira-Lima, and H. Neff, “Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector,” Opt. Express 41(10), 2582–2589 (2002).
[Crossref]

Deep, G. S.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. Nogueira-Lima, and H. Neff, “Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector,” Opt. Express 41(10), 2582–2589 (2002).
[Crossref]

DeNatale, J. F.

P. J. Hood and J. F. DeNatale, “Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films,” J. Appl. Phys. 70(1), 376–381 (1991).
[Crossref]

Donev, E. U.

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles,” Nano Lett. 9(2), 702–706 (2009).
[Crossref]

Dong, K.

Émond, N.

A. Hendaoui, N. Émond, M. Chaker, and É Haddad, “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett. 102(6), 061107 (2013).
[Crossref]

Eriksson, T. S.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Fang, X.

Fei, Z.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

Feldman, L. C.

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles,” Nano Lett. 9(2), 702–706 (2009).
[Crossref]

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadiumdioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Feng, Y.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Fernandez, F.

V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
[Crossref]

Fourmaux, S.

D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
[Crossref]

Frame, J. D.

Frigerio, J.-M.

C. Petit, J.-M. Frigerio, and M. Goldmann, “Hysteresis of the metal-insulator transition of VO2; evidence of the influence of microscopic texturation,” J. Phys.: Condens. Matter 11(16), 3259–3264 (1999).
[Crossref]

Gibaud, A.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Goldmann, M.

C. Petit, J.-M. Frigerio, and M. Goldmann, “Hysteresis of the metal-insulator transition of VO2; evidence of the influence of microscopic texturation,” J. Phys.: Condens. Matter 11(16), 3259–3264 (1999).
[Crossref]

Gong, Z.

Goodenough, J. B.

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

Granqvist, C. G.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Green, N. G.

Haddad, É

A. Hendaoui, N. Émond, M. Chaker, and É Haddad, “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett. 102(6), 061107 (2013).
[Crossref]

Haddad, E.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Haglund, R. F.

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
[Crossref]

R. F. Haglund, S. M. Weiss, and K. Appavoo, “Photonic and plasmonic modulators based on optical switching in VO2,” Proc. SPIE 9370, 93701C (2015).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting Nanoscale Size Dependence in VO2 Phase Transition Using a Split-Ring Resonator Metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref]

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles,” Nano Lett. 9(2), 702–706 (2009).
[Crossref]

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadiumdioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

Hallman, K. A.

Haynes, T. E.

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

Hendaoui, A.

A. Hendaoui, N. Émond, M. Chaker, and É Haddad, “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett. 102(6), 061107 (2013).
[Crossref]

Hood, P. J.

P. J. Hood and J. F. DeNatale, “Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films,” J. Appl. Phys. 70(1), 376–381 (1991).
[Crossref]

Huang, C.

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

Huang, Y.

J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance in micro- and nanopolycrystalline VO2 thin films with random resistor networks,” Opt. Eng. 47(3), 033801 (2008).
[Crossref]

Hunter, S.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

Il’inskii, A. V.

E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Phys. Solid State 52(11), 2426–2433 (2010).
[Crossref]

Ilinskii, A. V.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Jamroz, W.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Jean-Jacques, M.

D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
[Crossref]

Jostmeier, T.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
[Crossref]

Jung, J. H.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
[Crossref]

Kana Kana, J. B.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Karl, H.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
[Crossref]

Kasirga, T. S.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

Khakani, M. A. E.

D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
[Crossref]

Khanin, S. D.

E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Phys. Solid State 52(11), 2426–2433 (2010).
[Crossref]

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Khrebtov, I. A.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

Kieffer, J. C.

D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
[Crossref]

Kim, D. H.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
[Crossref]

Kim, H.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Klimov, V. A.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Krenner, H. J.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
[Crossref]

Kruzelecky, R.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Leahu, G.

G. Leahu, R. L. Voti, C. Sibilia, and M. Bertolotti, “Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate,” Appl. Phys. Lett. 103(23), 231114 (2013).
[Crossref]

Li, X.

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

Lima, A. M. N.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

Liu, H.

V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
[Crossref]

Liu, Q.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Long, R.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Lopez, R.

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles,” Nano Lett. 9(2), 702–706 (2009).
[Crossref]

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadiumdioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

Lou, S.

Lu, M.

S. Yu, S. Wang, M. Lu, and L. Zuo, “A metal-insulator transition study of VO2 thin films grown on sapphire substrates,” J. Appl. Phys. 122(23), 235102 (2017).
[Crossref]

Lysenko, S.

V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
[Crossref]

Maaza, M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Malyarov, V. G.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

Margot, J.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Marlow, G. S.

G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid-State Electron. 25(2), 91–94 (1982).
[Crossref]

Mastro, M. A.

Meersschaut, J.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Miller, K. J.

Misirlioglu, I. B.

Narayan, J.

J. Narayan and V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” J. Appl. Phys. 100(10), 103524 (2006).
[Crossref]

Ndjaka, J. M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Neff, H.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. Nogueira-Lima, and H. Neff, “Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector,” Opt. Express 41(10), 2582–2589 (2002).
[Crossref]

Niklasson, G. A.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Nogueira-Lima, A. M.

L. A. L. de Almeida, G. S. Deep, A. M. Nogueira-Lima, and H. Neff, “Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector,” Opt. Express 41(10), 2582–2589 (2002).
[Crossref]

Noh, T. W.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
[Crossref]

Osofsky, M.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Park, J. H.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

Petit, C.

C. Petit, J.-M. Frigerio, and M. Goldmann, “Hysteresis of the metal-insulator transition of VO2; evidence of the influence of microscopic texturation,” J. Phys.: Condens. Matter 11(16), 3259–3264 (1999).
[Crossref]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, and J. A. Squier, “Nonlinear optical microscopy analysis of ultrafast phase transformation in vanadium dioxide,” Opt. Lett. 27(8), 655–657 (2002).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Piqué, A.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Poinas, P.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Premkumar, P. A.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Qadri, S. B.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Radu, I. P.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Rozen, J.

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadiumdioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

Rua, A.

V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
[Crossref]

Schaekers, M.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Sendur, K.

Shadrin, E. B.

E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Phys. Solid State 52(11), 2426–2433 (2010).
[Crossref]

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Sibilia, C.

G. Leahu, R. L. Voti, C. Sibilia, and M. Bertolotti, “Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate,” Appl. Phys. Lett. 103(23), 231114 (2013).
[Crossref]

Sidorov, A. I.

E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Phys. Solid State 52(11), 2426–2433 (2010).
[Crossref]

Silva-Andrade, F.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Slack, J.

Squier, J.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Squier, J. A.

Suh, J. Y.

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

Sun, Z.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Tan, X.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Timofeeva, I. O.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Toeller, M.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Uslu, M. E.

Van Elshocht, S.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Vignaud, G.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Vikhnin, V. S.

V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
[Crossref]

Voti, R. L.

G. Leahu, R. L. Voti, C. Sibilia, and M. Bertolotti, “Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate,” Appl. Phys. Lett. 103(23), 231114 (2013).
[Crossref]

Wang, S.

S. Yu, S. Wang, M. Lu, and L. Zuo, “A metal-insulator transition study of VO2 thin films grown on sapphire substrates,” J. Appl. Phys. 122(23), 235102 (2017).
[Crossref]

Wang, X.

X. Wang, Z. Gong, K. Dong, S. Lou, J. Slack, A. Anders, and J. Yao, “Tunable Bragg filters with a phase transition material defect layer,” Opt. Express 24(18), 20365–20372 (2016).
[Crossref]

J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance in micro- and nanopolycrystalline VO2 thin films with random resistor networks,” Opt. Eng. 47(3), 033801 (2008).
[Crossref]

Wei, S.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Weiss, S. M.

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
[Crossref]

R. F. Haglund, S. M. Weiss, and K. Appavoo, “Photonic and plasmonic modulators based on optical switching in VO2,” Proc. SPIE 9370, 93701C (2015).
[Crossref]

Wheeler, V. D.

Wong, B.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Wu, C.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Xie, Y.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. A. Squier, “Nonlinear optical microscopy analysis of ultrafast phase transformation in vanadium dioxide,” Opt. Lett. 27(8), 655–657 (2002).
[Crossref]

Yang, L.

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

Yao, J.

Yao, T.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Yi, X.

J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance in micro- and nanopolycrystalline VO2 thin films with random resistor networks,” Opt. Eng. 47(3), 033801 (2008).
[Crossref]

Yu, S.

S. Yu, S. Wang, M. Lu, and L. Zuo, “A metal-insulator transition study of VO2 thin films grown on sapphire substrates,” J. Appl. Phys. 122(23), 235102 (2017).
[Crossref]

Yuan, X.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Zhang, S.

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

Zhang, W.

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Zimmer, J.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
[Crossref]

Zuo, L.

S. Yu, S. Wang, M. Lu, and L. Zuo, “A metal-insulator transition study of VO2 thin films grown on sapphire substrates,” J. Appl. Phys. 122(23), 235102 (2017).
[Crossref]

Appl. Phys. Lett. (8)

D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. E. Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. 87(5), 051910 (2005).
[Crossref]

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105(7), 071107 (2014).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadiumdioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

A. Hendaoui, N. Émond, M. Chaker, and É Haddad, “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett. 102(6), 061107 (2013).
[Crossref]

G. Leahu, R. L. Voti, C. Sibilia, and M. Bertolotti, “Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate,” Appl. Phys. Lett. 103(23), 231114 (2013).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium–oxide transition edge microbolometers,” Appl. Phys. Lett. 85(16), 3605–3607 (2004).
[Crossref]

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. Van Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

J. Appl. Phys. (5)

P. J. Hood and J. F. DeNatale, “Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films,” J. Appl. Phys. 70(1), 376–381 (1991).
[Crossref]

S. Yu, S. Wang, M. Lu, and L. Zuo, “A metal-insulator transition study of VO2 thin films grown on sapphire substrates,” J. Appl. Phys. 122(23), 235102 (2017).
[Crossref]

J. Narayan and V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” J. Appl. Phys. 100(10), 103524 (2006).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

J. Phys.: Condens. Matter (1)

C. Petit, J.-M. Frigerio, and M. Goldmann, “Hysteresis of the metal-insulator transition of VO2; evidence of the influence of microscopic texturation,” J. Phys.: Condens. Matter 11(16), 3259–3264 (1999).
[Crossref]

J. Solid State Chem. (1)

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

J. Vac. Sci. Technol., A (1)

F. C. Case, “Modifications in the phase transition properties of predeposited VO2 films,” J. Vac. Sci. Technol., A 2(4), 1509–1512 (1984).
[Crossref]

Nano Lett. (2)

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles,” Nano Lett. 9(2), 702–706 (2009).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting Nanoscale Size Dependence in VO2 Phase Transition Using a Split-Ring Resonator Metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[Crossref]

Nature (1)

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref]

New J. Chem. (1)

X. Li, S. Zhang, L. Yang, X. Li, J. Chen, and C. Huang, “A convenient way to reduce the hysteresis width of VO2(M) nanomaterials,” New J. Chem. 41(24), 15260–15267 (2017).
[Crossref]

Opt. Commun. (1)

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Opt. Eng. (1)

J. Dai, X. Wang, Y. Huang, and X. Yi, “Modeling of temperature-dependent resistance in micro- and nanopolycrystalline VO2 thin films with random resistor networks,” Opt. Eng. 47(3), 033801 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (3)

Phys. Lett. A (1)

V. S. Vikhnin, S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “The model of metal–insulator phase transition in vanadium oxide,” Phys. Lett. A 343(6), 446–453 (2005).
[Crossref]

Phys. Rev. B (2)

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996).
[Crossref]

Phys. Solid State (1)

E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Phys. Solid State 52(11), 2426–2433 (2010).
[Crossref]

Proc. SPIE (1)

R. F. Haglund, S. M. Weiss, and K. Appavoo, “Photonic and plasmonic modulators based on optical switching in VO2,” Proc. SPIE 9370, 93701C (2015).
[Crossref]

Sci. Rep. (1)

X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, “Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping,” Sci. Rep. 2(1), 466 (2012).
[Crossref]

Sol. Energy Mater. (1)

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Solid-State Electron. (1)

G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid-State Electron. 25(2), 91–94 (1982).
[Crossref]

Tech. Phys. (1)

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Atomic force microscopy of a 30-nm VO2 film shows a 3.54-nm (rms) surface roughness. (b) the surface roughness measured by AFM as a function of film thickness. (c) Film thicknesses range was calculated as ± 1.4x rms roughness plotted vs. average grown film thickness.
Fig. 2.
Fig. 2. (a) Temperature-dependent optical reflectance and transmittance spectra for the 30-nm VO2 film thickness for temperatures of 20, 60, 70, 80, and 99°C. (b) Optical transmittance at 1550nm for 8.6, 12.5, 18, 30, 44, and 57-nm VO2 film thicknesses shows the hysteretic nature of the transition (red: heating, blue: cooling). Measured (c) transition temperature and (d) transition width during heating and cooling for each thickness (with two widths measured upon cooling for the 57-nm sample due to the two distinct slopes when cooling). (e) The calculated hysteresis width plotted as a function of film thickness.
Fig. 3.
Fig. 3. (a) Temperature-dependent electrical resistance for 8.6, 12.5, 18, 30, 44, and 57-nm VO2 film thicknesses measured using circular transmission line model contact, as shown in inset. (b) Normalized optical transmittance (blue) and normalized electrical resistance (green) measured on the 57-nm-thick sample show similar asymmetric features. Note: the resistance in (b) is plotted on a linear scale with slope correction applied to remove the linear temperature-dependent resistance of the insulating phase.
Fig. 4.
Fig. 4. Raman Ag modes at (a) 190 and 220cm−1, and (b) 610 cm−1 measured as a function of temperature for a 57-nm thick VO2 film. Gaussian fits to the spectral peaks (c) and (d) show the Raman intensity varies as a function of temperature similar to the electrical and optical data, with two distinct slopes upon cooling, suggests a structural link to this behavior.
Fig. 5.
Fig. 5. Temperature-dependent (a) normal-incidence XRD showed a metal-insulator transition, with Gaussian-fit out-of-plane peaks, from 85.6 degree peak, tetragonal (400), to the 86 degree peak, monoclinic (040). (b) GIXRD measured the in-plane peaks. The in-plane 21.868-degree peak gradually shifts to the 21.7757 degrees, similar to the more gradual optical and electrical transition upon cooling.
Fig. 6.
Fig. 6. High resolution transmission electron microscopy reveals crystal structure of (a) oriented monoclinic VO2 (P21/c) on (0002) c-plane oriented Al2O3 substrates with facetted planes parallel to {220}. (b) a line profile taken on the image showed alternating V-V bond lengths of 0.257 and 0.290 nm along [002] crystallographic orientation.

Metrics