Abstract

InGaZnON (IGZON) thin films are attracting considerable research interest for their role as the active layers in thin-film transistors (TFTs). Investigating the temperature-dependent optical and electrical properties of IGZON thin films is important for understanding the mechanisms underlying the temperature stabilities of IGZON TFTs in display applications and for developing new applications such as TFT-based temperature sensors and optical temperature sensors. This study is the first to investigate the temperature-dependent optical and electrical properties of IGZON thin films, using transmittance spectra and Hall measurements. Transmittance spectra were obtained between room temperature (RT) and 423 K. The absorption edge shifts to longer wavelengths (red-shift) from 16 to 25 nm as the temperature increases, while the sensitivity changes from 0.12 to 0.17 nm/℃. Free-carrier absorption increases with temperature and shows a linear dependence on the electrical conductivity (σ) and the free-carrier concentration (n). The optical band gap displays a negative linear dependence on temperature, with a coefficient ranging from -0.0007 to -0.001 eV/K. The results highlight the potential for applying IGZON thin films to optical temperature sensing. The carrier-transport properties were studied between 103 K and RT. Thermally-activated behavior in σ is apparent when n is less than 2×1019 cm-3 under non-degenerate conditions, described as σ = σ0 exp[-A/T1/4], characteristic of variable-range-hopping conduction. A linear σ-T relation is also visible, arising from weak-localization dominated by electron-electron interactions. At larger n, the behavior evolves toward degenerate conduction. Weak thermally activated behavior is displayed by the n and Hall mobility over the entire temperature range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical and electrical properties of transparent conductive air-stable C-axis aligned crystalline InGaZnON thin films

Jian Ke Yao, Jia Min Lin, Fan Ye, and Ping Fan
Opt. Mater. Express 8(10) 2991-2999 (2018)

Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
    [Crossref]
  2. J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
    [Crossref]
  3. C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
    [Crossref]
  4. J. K. Yao, F. Ye, and P. Fan, “Optical and electrical properties of In2MgO4 thin film for transistor,” Opt. Mater. Express 8(11), 3438–3446 (2018).
    [Crossref]
  5. J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
    [Crossref]
  6. P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
    [Crossref]
  7. Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
    [Crossref]
  8. G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
    [Crossref]
  9. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
    [Crossref]
  10. G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
    [Crossref]
  11. G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
    [Crossref]
  12. H. Kim and K. Han, “High-linearity in-pixel thermal sensor using low-temperature poly-Si thin-film transistors,” IEEE Sens. J. 15(2), 963–970 (2015).
    [Crossref]
  13. H. Hayashi, T. Matsuda, and M. Kimura, “Hybrid-type temperature sensor using poly-Si thin- film transistors outputting rectangle waveforms,” IEEE Sens. J. 17, 4365–4368 (2017).
    [Crossref]
  14. A. Nakashima, Y. Sagawa, and M. Kimura, “Temperature sensor using thin-film transistor,” IEEE Sens. J. 11(4), 995–998 (2011).
    [Crossref]
  15. S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
    [Crossref]
  16. H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
    [Crossref]
  17. T. Kamiya, K. Nomura, and H. Hosono, “Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors,” Appl. Phys. Lett. 96(12), 122103 (2010).
    [Crossref]
  18. V. Bhosle, A. Tiwari, and J. Narayan, “Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO,” Appl. Phys. Lett. 88(3), 032106 (2006).
    [Crossref]
  19. K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
    [Crossref]
  20. J. K. Yao, F. Ye, and P. Fan, “Substrate temperature and N2 partial pressure dependent optical and electrical properties of InGaZnON thin films,” Mater. Res. Bull., to be published (2019).
  21. B. Abay, H. GuÈder, H. EfeogÆlu, and Y. YogÆurtcËu, “Temperature dependence of the optical energy gap and Urbach Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4,” J. Phys. Chem. Solids 62(4), 747–752 (2001).
    [Crossref]
  22. C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
    [Crossref]
  23. D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
    [Crossref]
  24. C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
    [Crossref]
  25. J. K. Yao, J. M. Lin, F. Ye, and P. Fan, “Optical and electrical properties of transparent conductive air-stable C-axis aligned crystalline InGaZnON thin films,” Opt. Mater. Express 8(10), 2991–2999 (2018).
    [Crossref]

2018 (2)

2017 (1)

H. Hayashi, T. Matsuda, and M. Kimura, “Hybrid-type temperature sensor using poly-Si thin- film transistors outputting rectangle waveforms,” IEEE Sens. J. 17, 4365–4368 (2017).
[Crossref]

2016 (1)

P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

2015 (2)

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

H. Kim and K. Han, “High-linearity in-pixel thermal sensor using low-temperature poly-Si thin-film transistors,” IEEE Sens. J. 15(2), 963–970 (2015).
[Crossref]

2014 (4)

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

2013 (2)

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

2012 (3)

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

2011 (4)

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

A. Nakashima, Y. Sagawa, and M. Kimura, “Temperature sensor using thin-film transistor,” IEEE Sens. J. 11(4), 995–998 (2011).
[Crossref]

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

2010 (1)

T. Kamiya, K. Nomura, and H. Hosono, “Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors,” Appl. Phys. Lett. 96(12), 122103 (2010).
[Crossref]

2009 (1)

K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
[Crossref]

2006 (1)

V. Bhosle, A. Tiwari, and J. Narayan, “Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO,” Appl. Phys. Lett. 88(3), 032106 (2006).
[Crossref]

2001 (2)

B. Abay, H. GuÈder, H. EfeogÆlu, and Y. YogÆurtcËu, “Temperature dependence of the optical energy gap and Urbach Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4,” J. Phys. Chem. Solids 62(4), 747–752 (2001).
[Crossref]

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Abay, B.

B. Abay, H. GuÈder, H. EfeogÆlu, and Y. YogÆurtcËu, “Temperature dependence of the optical energy gap and Urbach Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4,” J. Phys. Chem. Solids 62(4), 747–752 (2001).
[Crossref]

Asano, T.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Ast, D.

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

Balaji, N.

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Bhosle, V.

V. Bhosle, A. Tiwari, and J. Narayan, “Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO,” Appl. Phys. Lett. 88(3), 032106 (2006).
[Crossref]

Bo, Y.

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

Chang, C.

P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

Chang, G.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

Chang, K.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

Chang, T.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

Chen, J.

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

Chenghua, S.

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

Cho, D.

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

Choi, S.

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

Choi, W.

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Chou, Y.

P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

Deng, S. Z.

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

Dong, C.

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

EfeogÆlu, H.

B. Abay, H. GuÈder, H. EfeogÆlu, and Y. YogÆurtcËu, “Temperature dependence of the optical energy gap and Urbach Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4,” J. Phys. Chem. Solids 62(4), 747–752 (2001).
[Crossref]

Eguchi, T.

K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
[Crossref]

Ezaki, S.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Fan, P.

Fuh, C.

P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

Greene, R.

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

GuÈder, H.

B. Abay, H. GuÈder, H. EfeogÆlu, and Y. YogÆurtcËu, “Temperature dependence of the optical energy gap and Urbach Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4,” J. Phys. Chem. Solids 62(4), 747–752 (2001).
[Crossref]

Han, K.

H. Kim and K. Han, “High-linearity in-pixel thermal sensor using low-temperature poly-Si thin-film transistors,” IEEE Sens. J. 15(2), 963–970 (2015).
[Crossref]

Han, S.

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

Hayashi, H.

H. Hayashi, T. Matsuda, and M. Kimura, “Hybrid-type temperature sensor using poly-Si thin- film transistors outputting rectangle waveforms,” IEEE Sens. J. 17, 4365–4368 (2017).
[Crossref]

Helin, W.

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

Hidaka, K.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Hosono, H.

T. Kamiya, K. Nomura, and H. Hosono, “Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors,” Appl. Phys. Lett. 96(12), 122103 (2010).
[Crossref]

Hu, Z.

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

Huang, S.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

Huang, Y. P.

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

Hung, Y.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

Hwang, C.

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

Jang, K.

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Jhu, J.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

Jian, F.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

Juan, X.

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

Kamiya, T.

T. Kamiya, K. Nomura, and H. Hosono, “Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors,” Appl. Phys. Lett. 96(12), 122103 (2010).
[Crossref]

Kaneko, S.

K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
[Crossref]

Kim, H.

H. Kim and K. Han, “High-linearity in-pixel thermal sensor using low-temperature poly-Si thin-film transistors,” IEEE Sens. J. 15(2), 963–970 (2015).
[Crossref]

Kimura, M.

H. Hayashi, T. Matsuda, and M. Kimura, “Hybrid-type temperature sensor using poly-Si thin- film transistors outputting rectangle waveforms,” IEEE Sens. J. 17, 4365–4368 (2017).
[Crossref]

A. Nakashima, Y. Sagawa, and M. Kimura, “Temperature sensor using thin-film transistor,” IEEE Sens. J. 11(4), 995–998 (2011).
[Crossref]

Lee, Y.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

Levin, B.

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

Li, F.

P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

Liao, Y.

P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

Lin, J. M.

Liu, P.

P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

Liu, P. T.

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

Lynch, D.

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

Makise, K.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Marín, G.

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Márquez, R.

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Matsuda, T.

H. Hayashi, T. Matsuda, and M. Kimura, “Hybrid-type temperature sensor using poly-Si thin- film transistors outputting rectangle waveforms,” IEEE Sens. J. 17, 4365–4368 (2017).
[Crossref]

Medina, E.

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Muller, D.

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

Nakamura, H.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Nakashima, A.

A. Nakashima, Y. Sagawa, and M. Kimura, “Temperature sensor using thin-film transistor,” IEEE Sens. J. 11(4), 995–998 (2011).
[Crossref]

Nakata, M.

K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
[Crossref]

Narayan, J.

V. Bhosle, A. Tiwari, and J. Narayan, “Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO,” Appl. Phys. Lett. 88(3), 032106 (2006).
[Crossref]

Nieves, L.

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Nomura, K.

T. Kamiya, K. Nomura, and H. Hosono, “Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors,” Appl. Phys. Lett. 96(12), 122103 (2010).
[Crossref]

Nunez, C.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Park, J.

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

Pau, J.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Pérez, G.

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Piqueras, J.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Raja, J.

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Rincón, C.

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Ruiz, E.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Sagawa, Y.

A. Nakashima, Y. Sagawa, and M. Kimura, “Temperature sensor using thin-film transistor,” IEEE Sens. J. 11(4), 995–998 (2011).
[Crossref]

She, J.

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

Shieh, H.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

Shieh, H. P.

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

Shinozaki, B.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Sim, H.

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

Song, J.

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

Syu, Y.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

Sze, S.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

Sze, S. M.

P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

Tai, Y.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

Takechi, K.

K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
[Crossref]

Teng, L.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

Thompson, M.

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

Tianning, X.

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

Tiwari, A.

V. Bhosle, A. Tiwari, and J. Narayan, “Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO,” Appl. Phys. Lett. 88(3), 032106 (2006).
[Crossref]

Tomai, S.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Trinh, T.

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Tsai, T.

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

Wasim, S. M.

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

Wu, Q.

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

Xie, H.

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

Xu, L.

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

Xu, N. S.

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

Yamaguchi, H.

K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
[Crossref]

Yano, K.

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

Yao, J. K.

J. K. Yao, J. M. Lin, F. Ye, and P. Fan, “Optical and electrical properties of transparent conductive air-stable C-axis aligned crystalline InGaZnON thin films,” Opt. Mater. Express 8(10), 2991–2999 (2018).
[Crossref]

J. K. Yao, F. Ye, and P. Fan, “Optical and electrical properties of In2MgO4 thin film for transistor,” Opt. Mater. Express 8(11), 3438–3446 (2018).
[Crossref]

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

J. K. Yao, F. Ye, and P. Fan, “Substrate temperature and N2 partial pressure dependent optical and electrical properties of InGaZnON thin films,” Mater. Res. Bull., to be published (2019).

Ye, F.

Yi, J.

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

YogÆurtcËu, Y.

B. Abay, H. GuÈder, H. EfeogÆlu, and Y. YogÆurtcËu, “Temperature dependence of the optical energy gap and Urbach Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4,” J. Phys. Chem. Solids 62(4), 747–752 (2001).
[Crossref]

Yuling, L.

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

Zhou, D.

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

Zhu, B.

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

Appl. Phys. Lett. (7)

J. Raja, K. Jang, N. Balaji, W. Choi, T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

T. Kamiya, K. Nomura, and H. Hosono, “Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors,” Appl. Phys. Lett. 96(12), 122103 (2010).
[Crossref]

V. Bhosle, A. Tiwari, and J. Narayan, “Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO,” Appl. Phys. Lett. 88(3), 032106 (2006).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett. 100(18), 182103 (2012).
[Crossref]

D. Lynch, B. Zhu, B. Levin, D. Muller, D. Ast, R. Greene, and M. Thompson, “Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4,” Appl. Phys. Lett. 105(26), 262103 (2014).
[Crossref]

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

H. Sim, S. Choi, J. Park, J. Song, S. Han, C. Hwang, and D. Cho, “Low temperature measurement of the electrical conductivity in amorphous InGaZnO thin films,” ECS J. Solid State Sci. Technol. 3(2), P10–P12 (2014).
[Crossref]

IEEE Electron Device Lett. (2)

G. Chang, T. Chang, J. Jhu, T. Tsai, Y. Syu, K. Chang, Y. Tai, F. Jian, and Y. Hung, “Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors,” IEEE Electron Device Lett. 33(4), 540–542 (2012).
[Crossref]

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. Shieh, and S. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34(9), 1157–1159 (2013).
[Crossref]

IEEE Sens. J. (3)

H. Kim and K. Han, “High-linearity in-pixel thermal sensor using low-temperature poly-Si thin-film transistors,” IEEE Sens. J. 15(2), 963–970 (2015).
[Crossref]

H. Hayashi, T. Matsuda, and M. Kimura, “Hybrid-type temperature sensor using poly-Si thin- film transistors outputting rectangle waveforms,” IEEE Sens. J. 17, 4365–4368 (2017).
[Crossref]

A. Nakashima, Y. Sagawa, and M. Kimura, “Temperature sensor using thin-film transistor,” IEEE Sens. J. 11(4), 995–998 (2011).
[Crossref]

IEEE Trans. Electron Devices (2)

J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. She, H. P. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices 58(4), 1121–1126 (2011).
[Crossref]

G. Chang, T. Chang, J. Jhu, T. Tsai, K. Chang, Y. Syu, Y. Tai, F. Jian, and Y. Hung, “Temperature-dependent instability of bias stress in InGaZnO thin-film transistors,” IEEE Trans. Electron Devices 61(6), 2119–2124 (2014).
[Crossref]

J. Appl. Phys. (2)

C. Rincón, S. M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Pérez, and E. Medina, “Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8,” J. Appl. Phys. 90(9), 4423–4428 (2001).
[Crossref]

K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” J. Appl. Phys. 116(15), 153703 (2014).
[Crossref]

J. Disp. Technol. (1)

P. Liu, C. Chang, C. Fuh, Y. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO: N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

J. Phys. Chem. Solids (1)

B. Abay, H. GuÈder, H. EfeogÆlu, and Y. YogÆurtcËu, “Temperature dependence of the optical energy gap and Urbach Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4,” J. Phys. Chem. Solids 62(4), 747–752 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys. 48(1), 011301 (2009).
[Crossref]

Opt. Mater. Express (2)

Rev. Sci. Instrum. (1)

S. Chenghua, X. Juan, W. Helin, X. Tianning, Y. Bo, and L. Yuling, “Optical temperature sensor based on ZnO thin film's temperature-dependent optical Properties,” Rev. Sci. Instrum. 82(8), 084901 (2011).
[Crossref]

Solid-State Electron. (1)

Z. Hu, D. Zhou, L. Xu, Q. Wu, H. Xie, and C. Dong, “Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers,” Solid-State Electron. 104, 39–43 (2015).
[Crossref]

Other (1)

J. K. Yao, F. Ye, and P. Fan, “Substrate temperature and N2 partial pressure dependent optical and electrical properties of InGaZnON thin films,” Mater. Res. Bull., to be published (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. XRD patterns for the IGZON thin films.
Fig. 2.
Fig. 2. SEM morphologies and composition for the IGZON thin films.
Fig. 3.
Fig. 3. Temperature-dependent transmittance for the IGZON thin films (ultraviolet to visible wavelengths).
Fig. 4.
Fig. 4. Temperature-dependent transmittance for the IGZON thin films in the infrared region.
Fig. 5.
Fig. 5. Temperature-dependent absorption spectra for the IGZON thin films.
Fig. 6.
Fig. 6. Dependent of the FCA on the temperature and electrical conductivity in the IGZON thin films.
Fig. 7.
Fig. 7. Calculated temperature-dependent optical-band-gap energy for the IGZON thin films.
Fig. 8.
Fig. 8. Temperature-dependent optical-band-gap energies for the IGZON thin films.
Fig. 9.
Fig. 9. Temperature-dependent electrical conductivity (σ) from 103 K to RT for the IGZON thin films, plotted as log σversus (a) 1000/T, (b) 1/T-1/4, and (c) T.
Fig. 10.
Fig. 10. Temperature-dependent (a) free-carrier concentration (n) and (b) Hall mobility (µ) in the IGZON thin films, from 103 K to RT.

Metrics