Abstract

We demonstrate an ultralow loss monolithic integrated lithium niobate photonic platform consisting of dry-etched subwavelength waveguides with extracted propagation losses as low as 2.7 dB/m and microring resonators with quality factors up to 107.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical microring resonators in fluorine-implanted lithium niobate

Aleksej Majkić, Manuel Koechlin, Gorazd Poberaj, and Peter Günter
Opt. Express 16(12) 8769-8779 (2008)

Dispersion engineered high quality lithium niobate microring resonators

Yang He, Hanxiao Liang, Rui Luo, Mingxiao Li, and Qiang Lin
Opt. Express 26(13) 16315-16322 (2018)

Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide

Yuguang Zhang, Xiao Hu, Daigao Chen, Lei Wang, Miaofeng Li, Peng Feng, Xi Xiao, and Shaohua Yu
Opt. Lett. 43(7) 1586-1589 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Maleki and A. Matsko, Ferroelectric Crystals for Photonic Applications (Springer, 2009).
  2. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, Optica 1, 112 (2014).
    [Crossref]
  3. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, Opt. Express 23, 22746 (2015).
    [Crossref]
  4. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, Optica 3, 531 (2016).
    [Crossref]
  5. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, Opt. Express 25, 24531 (2017).
    [Crossref]
  6. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, Opt. Express 23, 23072 (2015).
    [Crossref]
  7. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” arXiv: 1701.06470 (2017).
  8. X. Ji, F. Barbosa, S. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. Gaeta, and M. Lipson, Optica 4, 619 (2017).
    [Crossref]
  9. J. O’Brien, Science 318, 1567 (2007).
    [Crossref]
  10. C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
    [Crossref]
  11. M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
    [Crossref]
  12. Q. Lin, M. Xiao, L. Yuan, and S. Fan, Nat. Commun. 7, 13731 (2016).
    [Crossref]

2017 (3)

2016 (3)

Q. Lin, M. Xiao, L. Yuan, and S. Fan, Nat. Commun. 7, 13731 (2016).
[Crossref]

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, Optica 3, 531 (2016).
[Crossref]

2015 (2)

2014 (1)

2007 (1)

J. O’Brien, Science 318, 1567 (2007).
[Crossref]

Barbosa, F.

Bernier, N. R.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

Bo, F.

Bowers, J. E.

Bryant, A.

Cardenas, J.

Chang, L.

Chen, L.

Chiles, J.

Dutt, A.

Fan, S.

Q. Lin, M. Xiao, L. Yuan, and S. Fan, Nat. Commun. 7, 13731 (2016).
[Crossref]

Fathpour, S.

Feofanov, A. K.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

Gaeta, A.

Gao, F.

He, Y.

Javerzac-Galy, C.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

Ji, X.

Jiang, H.

Kippenberg, T. J.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

Li, J.

Li, W.

Li, Y.

Liang, H.

Lin, Q.

Lipson, M.

X. Ji, F. Barbosa, S. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. Gaeta, and M. Lipson, Optica 4, 619 (2017).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” arXiv: 1701.06470 (2017).

Loncar, M.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” arXiv: 1701.06470 (2017).

Luo, R.

Maleki, L.

L. Maleki and A. Matsko, Ferroelectric Crystals for Photonic Applications (Springer, 2009).

Malinowski, M.

Matsko, A.

L. Maleki and A. Matsko, Ferroelectric Crystals for Photonic Applications (Springer, 2009).

Novak, S.

O’Brien, J.

J. O’Brien, Science 318, 1567 (2007).
[Crossref]

Okawachi, Y.

Patil, A.

Peters, J.

Plekhanov, K.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

Rabiei, P.

Rao, A.

Reano, R. M.

Ribeill, G. J.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
[Crossref]

Richardson, K.

Roberts, S.

Rogers, S.

Ryan, C.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
[Crossref]

Soltani, M.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
[Crossref]

Stern, B.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” arXiv: 1701.06470 (2017).

Toth, L. D.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

Volet, N.

Wan, S.

Wang, C.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” arXiv: 1701.06470 (2017).

Wang, J.

Wang, L.

Wood, M. G.

Xiao, M.

Q. Lin, M. Xiao, L. Yuan, and S. Fan, Nat. Commun. 7, 13731 (2016).
[Crossref]

Xu, J.

Xu, Q.

Yuan, L.

Q. Lin, M. Xiao, L. Yuan, and S. Fan, Nat. Commun. 7, 13731 (2016).
[Crossref]

Zhang, G.

Zhang, M.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” arXiv: 1701.06470 (2017).

Nat. Commun. (1)

Q. Lin, M. Xiao, L. Yuan, and S. Fan, Nat. Commun. 7, 13731 (2016).
[Crossref]

Opt. Express (3)

Optica (3)

Phys. Rev. A (2)

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815 (2016).
[Crossref]

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, Phys. Rev. A 96, 043808 (2017).
[Crossref]

Science (1)

J. O’Brien, Science 318, 1567 (2007).
[Crossref]

Other (2)

L. Maleki and A. Matsko, Ferroelectric Crystals for Photonic Applications (Springer, 2009).

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” arXiv: 1701.06470 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. (a) Scanning electron microscope (top) and optical microscope (bottom) images of a microring and micro-racetrack resonators of various lengths. Inset: Close-up of the etched waveguides. (b) Simulated optical modes in straight and bent waveguides.
Fig. 2.
Fig. 2. (a) Resonance linewidth in the best devices is as narrow as 38 MHz, corresponding to loaded Q L = 5 × 10 6 . The laser is modulated by a precise frequency source at 500 MHz for calibration. Inset: Transmission spectrum in logarithmic scale indicating that the resonator is nearly critically coupled. (b) Ring-down measurement of the same device. (c) Measured quality factors for different resonators on several chips. (d) Extracted propagation loss for racetrack resonators. All the measurements are conducted around 1590 nm.

Metrics